These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 20596898)

  • 1. Augmented reality haptic (ARH): an approach of electromagnetic tracking in minimally invasive surgery.
    Pagador JB; Sánchez LF; Sánchez JA; Bustos P; Moreno J; Sánchez-Margallo FM
    Int J Comput Assist Radiol Surg; 2011 Mar; 6(2):257-63. PubMed ID: 20596898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.
    van der Meijden OA; Schijven MP
    Surg Endosc; 2009 Jun; 23(6):1180-90. PubMed ID: 19118414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What is going on in augmented reality simulation in laparoscopic surgery?
    Botden SM; Jakimowicz JJ
    Surg Endosc; 2009 Aug; 23(8):1693-700. PubMed ID: 18813987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endoscopic instrument tracking for surgical simulation training in a controlled environment via a camera and a planar mirror.
    Dayak E; Çevik U
    Comput Biol Med; 2015 Dec; 67():161-71. PubMed ID: 26555745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VR-based simulators for training in minimally invasive surgery.
    Basdogan C; Sedef M; Harders M; Wesarg S
    IEEE Comput Graph Appl; 2007; 27(2):54-66. PubMed ID: 17388203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a Low-Cost Portable 3D Virtual Reality Gesture-Mediated Simulator for Training and Learning Basic Psychomotor Skills in Minimally Invasive Surgery: Development and Content Validity Study.
    Alvarez-Lopez F; Maina MF; Saigí-Rubió F
    J Med Internet Res; 2020 Jul; 22(7):e17491. PubMed ID: 32673217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of escalating feedback on the acquisition of psychomotor skills for laparoscopy.
    Van Sickle KR; Gallagher AG; Smith CD
    Surg Endosc; 2007 Feb; 21(2):220-4. PubMed ID: 17200909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.
    Loukas C; Lahanas V; Georgiou E
    Int J Med Robot; 2013 Dec; 9(4):e34-51. PubMed ID: 23355307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the VBLaST: a virtual basic laparoscopic skill trainer.
    Maciel A; Liu Y; Ahn W; Singh TP; Dunnican W; De S
    Int J Med Robot; 2008 Jun; 4(2):131-8. PubMed ID: 18348181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Surgical training using simulator. Virtual reality].
    Maschuw K; Hassan I; Bartsch DK
    Chirurg; 2010 Jan; 81(1):19-24. PubMed ID: 19838652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hand-eye calibration for rigid laparoscopes using an invariant point.
    Thompson S; Stoyanov D; Schneider C; Gurusamy K; Ourselin S; Davidson B; Hawkes D; Clarkson MJ
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1071-80. PubMed ID: 26995597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual university applied to telesurgery: from teleeducation to telemanipulation.
    Marescaux J; Soler L; Mutter D; Leroy J; Vix M; Koehl C; Clément JM
    Stud Health Technol Inform; 2000; 70():195-201. PubMed ID: 10977539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-enhanced laparoscopic training system (CELTS): bridging the gap.
    Stylopoulos N; Cotin S; Maithel SK; Ottensmeye M; Jackson PG; Bardsley RS; Neumann PF; Rattner DW; Dawson SL
    Surg Endosc; 2004 May; 18(5):782-9. PubMed ID: 15216861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Network-Based Minimally Invasive VR Surgery Simulator.
    Tagawa K; Tanaka HT; Kurumi Y; Komori M; Morikawa S
    Stud Health Technol Inform; 2016; 220():403-6. PubMed ID: 27046613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
    Chen L; Tang W; John NW; Wan TR; Zhang JJ
    Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of haptic feedback in laparoscopic suturing training and the additive value of virtual reality simulation.
    Botden SM; Torab F; Buzink SN; Jakimowicz JJ
    Surg Endosc; 2008 May; 22(5):1214-22. PubMed ID: 17943369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resident training in minimally invasive surgery: a survey of Canadian department and division chairs.
    Chan B; Martel G; Poulin EC; Mamazza J; Boushey RP
    Surg Endosc; 2010 Mar; 24(3):499-503. PubMed ID: 19585067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning.
    Badiali G; Ferrari V; Cutolo F; Freschi C; Caramella D; Bianchi A; Marchetti C
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1970-6. PubMed ID: 25441867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.