These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45 related articles for article (PubMed ID: 20597011)
1. Transposon mutagenesis in Clostridium difficile. Hussain HA; Roberts AP; Whalan R; Mullany P Methods Mol Biol; 2010; 646():203-11. PubMed ID: 20597011 [TBL] [Abstract][Full Text] [Related]
2. Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Deltaerm) and demonstration that the conjugative transposon Tn916DeltaE enters the genome of this strain at multiple sites. Hussain HA; Roberts AP; Mullany P J Med Microbiol; 2005 Feb; 54(Pt 2):137-141. PubMed ID: 15673506 [TBL] [Abstract][Full Text] [Related]
3. Gene cloning in Clostridium difficile using Tn916 as a shuttle conjugative transposon. Mullany P; Wilks M; Puckey L; Tabaqchali S Plasmid; 1994 May; 31(3):320-3. PubMed ID: 8058827 [TBL] [Abstract][Full Text] [Related]
4. Transfer of Tn916 and Tn916 delta E into Clostridium difficile: demonstration of a hot-spot for these elements in the C. difficile genome. Mullany P; Wilks M; Tabaqchali S FEMS Microbiol Lett; 1991 Apr; 63(2-3):191-4. PubMed ID: 1647998 [TBL] [Abstract][Full Text] [Related]
5. DNA sequence of the insertional hot spot of Tn916 in the Clostridium difficile genome and discovery of a Tn916-like element in an environmental isolate integrated in the same hot spot. Wang H; Roberts AP; Mullany P FEMS Microbiol Lett; 2000 Nov; 192(1):15-20. PubMed ID: 11040422 [TBL] [Abstract][Full Text] [Related]
6. Behavior and target site selection of conjugative transposon Tn916 in two different strains of toxigenic Clostridium difficile. Mullany P; Williams R; Langridge GC; Turner DJ; Whalan R; Clayton C; Lawley T; Hussain H; McCurrie K; Morden N; Allan E; Roberts AP Appl Environ Microbiol; 2012 Apr; 78(7):2147-53. PubMed ID: 22267673 [TBL] [Abstract][Full Text] [Related]
7. New variants of the tet(M) gene in Clostridium difficile clinical isolates harbouring Tn916-like elements. Spigaglia P; Barbanti F; Mastrantonio P J Antimicrob Chemother; 2006 Jun; 57(6):1205-9. PubMed ID: 16565156 [TBL] [Abstract][Full Text] [Related]
8. Methods for gene cloning and targeted mutagenesis. Carter GP; Lyras D; Poon R; Howarth PM; Rood JI Methods Mol Biol; 2010; 646():183-201. PubMed ID: 20597010 [TBL] [Abstract][Full Text] [Related]
9. Plasmids can transfer to Clostridium difficile CD37 and 630Δerm both by a DNase resistant conjugation-like mechanism and a DNase sensitive mechanism. Khodadoost L; Hussain H; Mullany P FEMS Microbiol Lett; 2017 Nov; 364(21):. PubMed ID: 29029255 [TBL] [Abstract][Full Text] [Related]
10. Development of an integrative vector for the expression of antisense RNA in Clostridium difficile. Roberts AP; Hennequin C; Elmore M; Collignon A; Karjalainen T; Minton N; Mullany P J Microbiol Methods; 2003 Dec; 55(3):617-24. PubMed ID: 14607405 [TBL] [Abstract][Full Text] [Related]
11. A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Mullany P; Pallen M; Wilks M; Stephen JR; Tabaqchali S Gene; 1996 Sep; 174(1):145-50. PubMed ID: 8863741 [TBL] [Abstract][Full Text] [Related]
12. Clostridium difficile: no longer an enigmatic pathogen? Roberts AP; Mullany P Methods Mol Biol; 2010; 646():3-7. PubMed ID: 20596999 [TBL] [Abstract][Full Text] [Related]
13. Complete genome sequence of the Clostridium difficile laboratory strain 630Δerm reveals differences from strain 630, including translocation of the mobile element CTn5. van Eijk E; Anvar SY; Browne HP; Leung WY; Frank J; Schmitz AM; Roberts AP; Smits WK BMC Genomics; 2015 Jan; 16(1):31. PubMed ID: 25636331 [TBL] [Abstract][Full Text] [Related]
15. Transposon mutagenesis of Mycoplasma gallisepticum by conjugation with enterococcus faecalis and determination of insertion site by direct genomic sequencing. Ruffin DC; van Santen VL; Zhang Y; Voelker LL; Panangala VS; Dybvig K Plasmid; 2000 Sep; 44(2):191-5. PubMed ID: 10964629 [TBL] [Abstract][Full Text] [Related]
17. Manual curation and reannotation of the genomes of Clostridium difficile 630Δerm and C. difficile 630. Dannheim H; Riedel T; Neumann-Schaal M; Bunk B; Schober I; Spröer C; Chibani CM; Gronow S; Liesegang H; Overmann J; Schomburg D J Med Microbiol; 2017 Mar; 66(3):286-293. PubMed ID: 28357980 [TBL] [Abstract][Full Text] [Related]
18. The development of Clostridium difficile genetic systems. Minton N; Carter G; Herbert M; O'keeffe T; Purdy D; Elmore M; Ostrowski A; Pennington O; Davis I Anaerobe; 2004 Apr; 10(2):75-84. PubMed ID: 16701503 [TBL] [Abstract][Full Text] [Related]
19. Epidemics of diarrhea caused by a clindamycin-resistant strain of Clostridium difficile in four hospitals. Johnson S; Samore MH; Farrow KA; Killgore GE; Tenover FC; Lyras D; Rood JI; DeGirolami P; Baltch AL; Rafferty ME; Pear SM; Gerding DN N Engl J Med; 1999 Nov; 341(22):1645-51. PubMed ID: 10572152 [TBL] [Abstract][Full Text] [Related]
20. Electroporation of DNA sequences from the pathogenicity locus (PaLoc) of toxigenic Clostridium difficile into a non-toxigenic strain. Ackermann G; Tang YJ; Henderson JP; Rodloff AC; Silva J; Cohen SH Mol Cell Probes; 2001 Oct; 15(5):301-6. PubMed ID: 11735302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]