These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20597278)

  • 1. Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem.
    Logan JA; MacFarlane WW; Willcox L
    Ecol Appl; 2010 Jun; 20(4):895-902. PubMed ID: 20597278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem.
    Buotte PC; Hicke JA; Preisler HK; Abatzoglou JT; Raffa KF; Logan JA
    Ecol Appl; 2016 Dec; 26(8):2505-2522. PubMed ID: 27907251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An innovative aerial assessment of Greater Yellowstone Ecosystem mountain pine beetle-caused whitebark pine mortality.
    Macfarlane WW; Logan JA; Kern WR
    Ecol Appl; 2013 Mar; 23(2):421-37. PubMed ID: 23634592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate-induced outbreaks in high-elevation pines are driven primarily by immigration of bark beetles from historical hosts.
    Howe M; Carroll A; Gratton C; Raffa KF
    Glob Chang Biol; 2021 Nov; 27(22):5786-5805. PubMed ID: 34428326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses.
    Raffa KF; Powell EN; Townsend PA
    Proc Natl Acad Sci U S A; 2013 Feb; 110(6):2193-8. PubMed ID: 23277541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USA.
    Mietkiewicz N; Kulakowski D
    Ecol Appl; 2016 Dec; 26(8):2523-2535. PubMed ID: 27787956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles.
    Wong CM; Daniels LD
    Glob Chang Biol; 2017 May; 23(5):1926-1941. PubMed ID: 27901296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies.
    Harvey BJ; Donato DC; Turner MG
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15120-5. PubMed ID: 25267633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defense traits in the long-lived Great Basin bristlecone pine and resistance to the native herbivore mountain pine beetle.
    Bentz BJ; Hood SM; Hansen EM; Vandygriff JC; Mock KE
    New Phytol; 2017 Jan; 213(2):611-624. PubMed ID: 27612209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does the legacy of historical thinning treatments foster resilience to bark beetle outbreaks in subalpine forests?
    Morris JE; Buonanduci MS; Agne MC; Battaglia MA; Harvey BJ
    Ecol Appl; 2022 Jan; 32(1):e02474. PubMed ID: 34653267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains.
    Chapman TB; Veblen TT; Schoennagel T
    Ecology; 2012 Oct; 93(10):2175-85. PubMed ID: 23185879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.
    Keville MP; Reed SC; Cleveland CC
    PLoS One; 2013; 8(6):e65004. PubMed ID: 23755166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sapwood Stored Resources Decline in Whitebark and Lodgepole Pines Attacked by Mountain Pine Beetles (Coleoptera: Curculionidae).
    Lahr EC; Sala A
    Environ Entomol; 2016 Dec; 45(6):1463-1475. PubMed ID: 28028093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.
    Eidson EL; Mock KE; Bentz BJ
    PLoS One; 2018; 13(5):e0196732. PubMed ID: 29715269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.
    Hood SM; Baker S; Sala A
    Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vegetation dynamics following compound disturbance in a dry pine forest: fuel treatment then bark beetle outbreak.
    Crotteau JS; Keyes CR; Hood SM; Larson AJ
    Ecol Appl; 2020 Mar; 30(2):e02023. PubMed ID: 31628705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Severe White Pine Blister Rust Infection in Whitebark Pine Alters Mountain Pine Beetle (Coleoptera: Curculionidae) Attack Density, Emergence Rate, and Body Size.
    Dooley EM; Six DL
    Environ Entomol; 2015 Oct; 44(5):1384-94. PubMed ID: 26314009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpine treeline ecotones are potential refugia for a montane pine species threatened by bark beetle outbreaks.
    Maher CT; Millar CI; Affleck DLR; Keane RE; Sala A; Tobalske C; Larson AJ; Nelson CR
    Ecol Appl; 2021 Apr; 31(3):e2274. PubMed ID: 33617144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.
    Teste FP; Lieffers VJ; Landhausser SM
    Ecol Appl; 2011 Jan; 21(1):150-62. PubMed ID: 21516894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid monoterpene induction promotes the susceptibility of a novel host pine to mountain pine beetle colonization but not to beetle-vectored fungi.
    Cale JA; Muskens M; Najar A; Ishangulyyeva G; Hussain A; Kanekar SS; Klutsch JG; Taft S; Erbilgin N
    Tree Physiol; 2017 Dec; 37(12):1597-1610. PubMed ID: 28985375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.