These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20597986)

  • 1. Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress.
    Lemire J; Milandu Y; Auger C; Bignucolo A; Appanna VP; Appanna VD
    FEMS Microbiol Lett; 2010 Aug; 309(2):170-7. PubMed ID: 20597986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha-ketoglutarate dehydrogenase and glutamate dehydrogenase work in tandem to modulate the antioxidant alpha-ketoglutarate during oxidative stress in Pseudomonas fluorescens.
    Mailloux RJ; Singh R; Brewer G; Auger C; Lemire J; Appanna VD
    J Bacteriol; 2009 Jun; 191(12):3804-10. PubMed ID: 19376872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of formate in combatting oxidative stress.
    Thomas SC; Alhasawi A; Auger C; Omri A; Appanna VD
    Antonie Van Leeuwenhoek; 2016 Feb; 109(2):263-71. PubMed ID: 26626058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist.
    Mailloux RJ; Bériault R; Lemire J; Singh R; Chénier DR; Hamel RD; Appanna VD
    PLoS One; 2007 Aug; 2(8):e690. PubMed ID: 17668068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide stress provokes a metabolic reprogramming in Pseudomonas fluorescens: enhanced production of pyruvate.
    Bignucolo A; Appanna VP; Thomas SC; Auger C; Han S; Omri A; Appanna VD
    J Biotechnol; 2013 Sep; 167(3):309-15. PubMed ID: 23871654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine metabolism and anti-oxidative defence mechanisms in Pseudomonas fluorescens.
    Alhasawi A; Castonguay Z; Appanna ND; Auger C; Appanna VD
    Microbiol Res; 2015 Feb; 171():26-31. PubMed ID: 25644949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic adaptation and NADPH homeostasis evoked by a sulfur-deficient environment in Pseudomonas fluorescens.
    Legendre F; Tharmalingam S; Bley AM; MacLean A; Appanna VD
    Antonie Van Leeuwenhoek; 2020 May; 113(5):605-616. PubMed ID: 31828449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic networks to combat oxidative stress in Pseudomonas fluorescens.
    Mailloux RJ; Lemire J; Appanna VD
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):433-42. PubMed ID: 21153706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity.
    Lemire J; Mailloux R; Auger C; Whalen D; Appanna VD
    Environ Microbiol; 2010 Jun; 12(6):1384-90. PubMed ID: 20353438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum-tolerant Pseudomonas fluorescens: ROS toxicity and enhanced NADPH production.
    Singh R; Beriault R; Middaugh J; Hamel R; Chenier D; Appanna VD; Kalyuzhnyi S
    Extremophiles; 2005 Oct; 9(5):367-73. PubMed ID: 15970995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of TCA cycle enzymes and aluminum stress in Pseudomonas fluorescens.
    Hamel RD; Appanna VD
    J Inorg Biochem; 2001 Nov; 87(1-2):1-8. PubMed ID: 11709206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress.
    Tretter L; Adam-Vizi V
    J Neurosci; 2000 Dec; 20(24):8972-9. PubMed ID: 11124972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens.
    Singh R; Mailloux RJ; Puiseux-Dao S; Appanna VD
    J Bacteriol; 2007 Sep; 189(18):6665-75. PubMed ID: 17573472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The overexpression of NADPH-producing enzymes counters the oxidative stress evoked by gallium, an iron mimetic.
    Bériault R; Hamel R; Chenier D; Mailloux RJ; Joly H; Appanna VD
    Biometals; 2007 Apr; 20(2):165-76. PubMed ID: 16900398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonezymatic formation of succinate in mitochondria under oxidative stress.
    Fedotcheva NI; Sokolov AP; Kondrashova MN
    Free Radic Biol Med; 2006 Jul; 41(1):56-64. PubMed ID: 16781453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aluminum triggers decreased aconitase activity via Fe-S cluster disruption and the overexpression of isocitrate dehydrogenase and isocitrate lyase: a metabolic network mediating cellular survival.
    Middaugh J; Hamel R; Jean-Baptiste G; Beriault R; Chenier D; Appanna VD
    J Biol Chem; 2005 Feb; 280(5):3159-65. PubMed ID: 15548528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual conformation of the post-decarboxylation intermediate is associated with distinct enzyme states in mycobacterial KGD (α-ketoglutarate decarboxylase).
    Wagner T; Barilone N; Alzari PM; Bellinzoni M
    Biochem J; 2014 Feb; 457(3):425-34. PubMed ID: 24171907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.
    Tretter L; Adam-Vizi V
    J Neurosci; 2004 Sep; 24(36):7771-8. PubMed ID: 15356188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. α -Ketoglutarate accumulation is not dependent on isocitrate dehydrogenase activity during tellurite detoxification in Escherichia coli.
    Reinoso CA; Appanna VD; Vásquez CC
    Biomed Res Int; 2013; 2013():784190. PubMed ID: 24371831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Keto acid metabolism in Desulfovibrio.
    Lewis AJ; Miller JD
    J Gen Microbiol; 1975 Oct; 90(2):286-92. PubMed ID: 1194893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.