These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20598128)

  • 1. An adaptation model for trabecular bone at different mechanical levels.
    Gong H; Zhu D; Gao J; Lv L; Zhang X
    Biomed Eng Online; 2010 Jul; 9():32. PubMed ID: 20598128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics.
    Tanck E; Ruimerman R; Huiskes R
    J Biomech; 2006; 39(14):2631-7. PubMed ID: 16214155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Load adaptation through bone remodeling: a mechanobiological model coupled with the finite element method.
    Peyroteo MMA; Belinha J; Natal Jorge RM
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1495-1507. PubMed ID: 33900492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical framework for strain-related trabecular bone maintenance and adaptation.
    Ruimerman R; Hilbers P; van Rietbergen B; Huiskes R
    J Biomech; 2005 Apr; 38(4):931-41. PubMed ID: 15713314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone.
    Huiskes R; Ruimerman R; van Lenthe GH; Janssen JD
    Nature; 2000 Jun; 405(6787):704-6. PubMed ID: 10864330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic relationships of trabecular bone density, architecture, and strength in a computational model of osteopenia.
    Siffert RS; Luo GM; Cowin SC; Kaufman JJ
    Bone; 1996 Feb; 18(2):197-206. PubMed ID: 8833215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling.
    Müller R
    Osteoporos Int; 2005 Mar; 16 Suppl 2():S25-35. PubMed ID: 15340800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis.
    Skerry TM
    Arch Biochem Biophys; 2008 May; 473(2):117-23. PubMed ID: 18334226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proposal for the regulatory mechanism of Wolff's law.
    Mullender MG; Huiskes R
    J Orthop Res; 1995 Jul; 13(4):503-12. PubMed ID: 7674066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of bone adaptation as an optimization process.
    Bagge M
    J Biomech; 2000 Nov; 33(11):1349-57. PubMed ID: 10940393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.
    Ren L; Yang P; Wang Z; Zhang J; Ding C; Shang P
    J Mech Behav Biomed Mater; 2015 Oct; 50():104-22. PubMed ID: 26119589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3-dimensional computer model to simulate trabecular bone metabolism.
    Ruimerman R; Van Rietbergen B; Hilbers P; Huiskes R
    Biorheology; 2003; 40(1-3):315-20. PubMed ID: 12454421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical signaling for bone modeling and remodeling.
    Robling AG; Turner CH
    Crit Rev Eukaryot Gene Expr; 2009; 19(4):319-38. PubMed ID: 19817708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon.
    Giorgio I; dell'Isola F; Andreaus U; Alzahrani F; Hayat T; Lekszycki T
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1639-1663. PubMed ID: 31102081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer modelling of bone's adaptation: the role of normal strain, shear strain and fluid flow.
    Tiwari AK; Prasad J
    Biomech Model Mechanobiol; 2017 Apr; 16(2):395-410. PubMed ID: 27585446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.
    Jang IG; Kim IY; Kwak BB
    J Biomech Eng; 2009 Jan; 131(1):011012. PubMed ID: 19045928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone.
    Rubin CT; Lanyon LE
    J Orthop Res; 1987; 5(2):300-10. PubMed ID: 3572599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new biological bone remodeling in silico model combined with advanced discretization methods.
    Peyroteo MMA; Belinha J; Dinis LMJS; Natal Jorge RM
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3196. PubMed ID: 30835964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level.
    Schulte FA; Ruffoni D; Lambers FM; Christen D; Webster DJ; Kuhn G; Müller R
    PLoS One; 2013; 8(4):e62172. PubMed ID: 23637993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.