BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

577 related articles for article (PubMed ID: 20598447)

  • 1. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef.
    Meza-Márquez OG; Gallardo-Velázquez T; Osorio-Revilla G
    Meat Sci; 2010 Oct; 86(2):511-9. PubMed ID: 20598447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.
    Rohman A; Sismindari ; Erwanto Y; Che Man YB
    Meat Sci; 2011 May; 88(1):91-5. PubMed ID: 21227596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FT-MIR and Raman spectroscopy coupled to multivariate analysis for the detection of clenbuterol in murine model.
    Meza-Márquez OG; Gallardo-Velázquez T; Dorantes-Álvarez L; Osorio-Revilla G; de la Rosa Arana JL
    Analyst; 2011 Aug; 136(16):3355-65. PubMed ID: 21709857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils.
    Jiménez-Sotelo P; Hernández-Martínez M; Osorio-Revilla G; Meza-Márquez OG; García-Ochoa F; Gallardo-Velázquez T
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1105-15. PubMed ID: 27314226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef.
    Morsy N; Sun DW
    Meat Sci; 2013 Feb; 93(2):292-302. PubMed ID: 23040181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics.
    Kelly JF; Downey G; Fouratier V
    J Agric Food Chem; 2004 Jan; 52(1):33-9. PubMed ID: 14709010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-infrared spectroscopy and chemometrics for the authentication of meat products.
    Al-Jowder O; Defernez M; Kemsley EK; Wilson RH
    J Agric Food Chem; 1999 Aug; 47(8):3210-8. PubMed ID: 10552633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation.
    Rahmania H; Sudjadi ; Rohman A
    Meat Sci; 2015 Feb; 100():301-5. PubMed ID: 25460140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and quantification of industrial grade glycerol adulteration in red wine with fourier transform infrared spectroscopy using chemometrics and artificial neural networks.
    Dixit V; Tewari JC; Cho BK; Irudayaraj JM
    Appl Spectrosc; 2005 Dec; 59(12):1553-61. PubMed ID: 16390596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersive Raman spectroscopy and multivariate data analysis to detect offal adulteration of thawed beefburgers.
    Zhao M; Downey G; O'Donnell CP
    J Agric Food Chem; 2015 Feb; 63(5):1433-41. PubMed ID: 25526381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of adulteration in fresh and frozen beefburger products by beef offal using mid-infrared ATR spectroscopy and multivariate data analysis.
    Zhao M; Downey G; O'Donnell CP
    Meat Sci; 2014 Feb; 96(2 Pt A):1003-11. PubMed ID: 24262491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints.
    Panagou EZ; Mohareb FR; Argyri AA; Bessant CM; Nychas GJ
    Food Microbiol; 2011 Jun; 28(4):782-90. PubMed ID: 21511139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species.
    Nicolaou N; Xu Y; Goodacre R
    J Dairy Sci; 2010 Dec; 93(12):5651-60. PubMed ID: 21094736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of apple juice adulteration using near-infrared transflectance spectroscopy.
    León L; Kelly JD; Downey G
    Appl Spectrosc; 2005 May; 59(5):593-9. PubMed ID: 15969804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis and detection of adulteration in crab meat using visible and near-infrared spectroscopy.
    Gayo J; Hale SA; Blanchard SM
    J Agric Food Chem; 2006 Feb; 54(4):1130-6. PubMed ID: 16478227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods.
    Rodríguez SD; Rolandelli G; Buera MP
    Food Chem; 2019 Feb; 274():392-401. PubMed ID: 30372956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Determination of adulteration in honey using near-infrared spectroscopy].
    Chen LZ; Zhao J; Ye ZH; Zhong YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2565-8. PubMed ID: 19271491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS).
    Velioglu HM; Sezer B; Bilge G; Baytur SE; Boyaci IH
    Meat Sci; 2018 Apr; 138():28-33. PubMed ID: 29289716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics.
    Petrakis EA; Polissiou MG
    Talanta; 2017 Jan; 162():558-566. PubMed ID: 27837871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Authentication analysis of cod liver oil from beef fat using fatty acid composition and FTIR spectra.
    Rohman A; Man YB
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 Nov; 28(11):1469-74. PubMed ID: 21827226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.