BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 20598513)

  • 21. Development of nanoformulation of picroliv isolated from Picrorrhiza kurroa.
    Guliani A; Kumari A; Kumar D; Yadav SK
    IET Nanobiotechnol; 2016 Jun; 10(3):114-9. PubMed ID: 27256889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factorial design optimization and characterization of poly-lactic acid (PLA) nanoparticle formation for the delivery of grape extracts.
    Fernández K; Aburto J; von Plessing C; Rockel M; Aspé E
    Food Chem; 2016 Sep; 207():75-85. PubMed ID: 27080882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids.
    Rodriguez EB; Almeda RA; Vidallon MLP; Reyes CT
    J Sci Food Agric; 2019 Mar; 99(4):1980-1989. PubMed ID: 30270448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences.
    Kumar P; Sharma G; Kumar R; Singh B; Malik R; Katare OP; Raza K
    Int J Pharm; 2016 Dec; 515(1-2):307-314. PubMed ID: 27756627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
    Feng SS; Mei L; Anitha P; Gan CW; Zhou W
    Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-encapsulation of biodegradable nanoparticles with silicon quantum dots and quercetin for monitored delivery.
    Wang Q; Bao Y; Ahire J; Chao Y
    Adv Healthc Mater; 2013 Mar; 2(3):459-66. PubMed ID: 23184534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modified PLA nano in situ gel: a potential ophthalmic drug delivery system.
    Nagarwal RC; Kumar R; Dhanawat M; Pandit JK
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):28-34. PubMed ID: 21497491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and characterization of poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(L-lactide) biodegradable copolymers as drug carriers.
    Peng T; Cheng SX; Zhuo RX
    J Biomed Mater Res A; 2006 Jan; 76(1):163-73. PubMed ID: 16258962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs.
    Dong Y; Feng SS
    Biomaterials; 2004 Jun; 25(14):2843-9. PubMed ID: 14962562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pulmonary drug delivery with aerosolizable nanoparticles in an ex vivo lung model.
    Beck-Broichsitter M; Gauss J; Packhaeuser CB; Lahnstein K; Schmehl T; Seeger W; Kissel T; Gessler T
    Int J Pharm; 2009 Feb; 367(1-2):169-78. PubMed ID: 18848609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploration of statistical experimental design to improve entrapment efficiency of acyclovir in poly (d, l) lactide nanoparticles.
    Patel PJ; Gohel MC; Acharya SR
    Pharm Dev Technol; 2014 Mar; 19(2):200-12. PubMed ID: 23432525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microporous structure and drug release kinetics of polymeric nanoparticles.
    Sant S; Thommes M; Hildgen P
    Langmuir; 2008 Jan; 24(1):280-7. PubMed ID: 18052222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formulation, characterization, and in vitro evaluation of quantum dots loaded in poly(lactide)-vitamin E TPGS nanoparticles for cellular and molecular imaging.
    Pan J; Wang Y; Feng SS
    Biotechnol Bioeng; 2008 Oct; 101(3):622-33. PubMed ID: 18727131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembling linear and star shaped poly(ϵ-caprolactone)/poly[(meth)acrylic acid] block copolymers as carriers of indomethacin and quercetin.
    Bury K; Du Prez F; Neugebauer D
    Macromol Biosci; 2013 Nov; 13(11):1520-30. PubMed ID: 23894125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and in-vitro bioactivity evaluation of paclitaxel-loaded polyester nanoparticles.
    López-Gasco P; Iglesias I; Benedí J; Lozano R; Blanco MD
    Anticancer Drugs; 2012 Oct; 23(9):947-58. PubMed ID: 22713593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inkjet printing of layer-by-layer assembled poly(lactide) stereocomplex with encapsulated proteins.
    Akagi T; Fujiwara T; Akashi M
    Langmuir; 2014 Feb; 30(6):1669-76. PubMed ID: 24460124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel self-assembled core-shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release.
    Papadimitriou S; Bikiaris D
    J Control Release; 2009 Sep; 138(2):177-84. PubMed ID: 19446585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles.
    Wu TH; Yen FL; Lin LT; Tsai TR; Lin CC; Cham TM
    Int J Pharm; 2008 Jan; 346(1-2):160-8. PubMed ID: 17689897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and Characterization of Quercetin-Loaded Zein Nanoparticles by Electrospraying and Study of In Vitro Bioavailability.
    Rodríguez-Félix F; Del-Toro-Sánchez CL; Javier Cinco-Moroyoqui F; Juárez J; Ruiz-Cruz S; López-Ahumada GA; Carvajal-Millan E; Castro-Enríquez DD; Barreras-Urbina CG; Tapia-Hernández JA
    J Food Sci; 2019 Oct; 84(10):2883-2897. PubMed ID: 31553062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.