These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 20598528)
1. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm. Zhuang L; Zhou S; Yuan Y; Liu T; Wu Z; Cheng J Bioresour Technol; 2011 Jan; 102(1):284-9. PubMed ID: 20598528 [TBL] [Abstract][Full Text] [Related]
2. [Mechanisms of bioelectricity generation in Enterobacter aerogenes-based microbial fuel cells]. Zhang JT; Zhou SG; Zhang LX; Lu N; Deng LF; Ni JR Huan Jing Ke Xue; 2009 Apr; 30(4):1215-20. PubMed ID: 19545032 [TBL] [Abstract][Full Text] [Related]
3. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Chung K; Okabe S Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637 [TBL] [Abstract][Full Text] [Related]
4. Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. Chung K; Okabe S Biotechnol Bioeng; 2009 Dec; 104(5):901-10. PubMed ID: 19575435 [TBL] [Abstract][Full Text] [Related]
5. Effects of inoculation strategy and cultivation approach on the performance of microbial fuel cell using marine sediment as bio-matrix. Liu Z; Li H; Liu J; Su Z J Appl Microbiol; 2008 Apr; 104(4):1163-70. PubMed ID: 18005344 [TBL] [Abstract][Full Text] [Related]
6. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Yuan Y; Zhao B; Zhou S; Zhong S; Zhuang L Bioresour Technol; 2011 Jul; 102(13):6887-91. PubMed ID: 21530241 [TBL] [Abstract][Full Text] [Related]
7. Operational temperature regulates anodic biofilm growth and the development of electrogenic activity. Michie IS; Kim JR; Dinsdale RM; Guwy AJ; Premier GC Appl Microbiol Biotechnol; 2011 Oct; 92(2):419-30. PubMed ID: 21853240 [TBL] [Abstract][Full Text] [Related]
8. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Liang P; Wang H; Xia X; Huang X; Mo Y; Cao X; Fan M Biosens Bioelectron; 2011 Feb; 26(6):3000-4. PubMed ID: 21190836 [TBL] [Abstract][Full Text] [Related]
9. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell. Chung K; Fujiki I; Okabe S Bioresour Technol; 2011 Jan; 102(1):355-60. PubMed ID: 20923722 [TBL] [Abstract][Full Text] [Related]
10. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells. Liu M; Yuan Y; Zhang LX; Zhuang L; Zhou SG; Ni JR Bioresour Technol; 2010 Mar; 101(6):1807-11. PubMed ID: 19879132 [TBL] [Abstract][Full Text] [Related]
11. A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat. Cheng KY; Cord-Ruwisch R; Ho G Bioelectrochemistry; 2009 Feb; 74(2):227-31. PubMed ID: 19019740 [TBL] [Abstract][Full Text] [Related]
12. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Picot M; Lapinsonnière L; Rothballer M; Barrière F Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564 [TBL] [Abstract][Full Text] [Related]
13. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Ramasamy RP; Ren Z; Mench MM; Regan JM Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells. Yuan Y; Zhou S; Xu N; Zhuang L Colloids Surf B Biointerfaces; 2011 Feb; 82(2):641-6. PubMed ID: 21050727 [TBL] [Abstract][Full Text] [Related]
15. Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Venkata Mohan S; Veer Raghavulu S; Sarma PN Biosens Bioelectron; 2008 Sep; 24(1):41-7. PubMed ID: 18440217 [TBL] [Abstract][Full Text] [Related]
16. Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load. Raghavulu SV; Goud RK; Sarma PN; Mohan SV Bioresour Technol; 2011 Feb; 102(3):2751-7. PubMed ID: 21146401 [TBL] [Abstract][Full Text] [Related]
17. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Torres CI; Kato Marcus A; Rittmann BE Biotechnol Bioeng; 2008 Aug; 100(5):872-81. PubMed ID: 18551519 [TBL] [Abstract][Full Text] [Related]
18. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Chae KJ; Choi MJ; Lee JW; Kim KY; Kim IS Bioresour Technol; 2009 Jul; 100(14):3518-25. PubMed ID: 19345574 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of consumption of fermentation products by anode-respiring bacteria. Torres CI; Marcus AK; Rittmann BE Appl Microbiol Biotechnol; 2007 Dec; 77(3):689-97. PubMed ID: 17909786 [TBL] [Abstract][Full Text] [Related]
20. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Picioreanu C; van Loosdrecht MC; Curtis TP; Scott K Bioelectrochemistry; 2010 Apr; 78(1):8-24. PubMed ID: 19523880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]