BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 20598648)

  • 1. An in vitro study of dynamic cyclic compressive stress on human inner annulus fibrosus and nucleus pulposus cells.
    Hee HT; Zhang J; Wong HK
    Spine J; 2010 Sep; 10(9):795-801. PubMed ID: 20598648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cyclic dynamic tensile strain on previously compressed inner annulus fibrosus and nucleus pulposus cells of human intervertebral disc-an in vitro study.
    Hee HT; Zhang J; Wong HK
    J Orthop Res; 2010 Apr; 28(4):503-9. PubMed ID: 19810104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biologic response of the intervertebral disc to static and dynamic compression in vitro.
    Wang DL; Jiang SD; Dai LY
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2521-8. PubMed ID: 17978649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulations of polyvinyl alcohol cryogel that mimic the biomechanical properties of soft tissues in the natural lumbar intervertebral disc.
    Wang BH; Campbell G
    Spine (Phila Pa 1976); 2009 Dec; 34(25):2745-53. PubMed ID: 19940732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially varying material properties of the rat caudal intervertebral disc.
    Ho MM; Kelly TA; Guo XE; Ateshian GA; Hung CT
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E486-93. PubMed ID: 16816748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ultrastructure of intervertebral disk in the corresponding area after internal fixation of spinal column].
    Jia C; Bai S; Zhu X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Apr; 19(4):283-6. PubMed ID: 15921319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus.
    Scott JE; Bosworth TR; Cribb AM; Taylor JR
    J Anat; 1994 Feb; 184 ( Pt 1)(Pt 1):73-82. PubMed ID: 8157495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Olfactory stem cells can be induced to express chondrogenic phenotype in a rat intervertebral disc injury model.
    Murrell W; Sanford E; Anderberg L; Cavanagh B; Mackay-Sim A
    Spine J; 2009 Jul; 9(7):585-94. PubMed ID: 19345615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain transfer in the annulus fibrosus under applied flexion.
    Desrochers J; Duncan NA
    J Biomech; 2010 Aug; 43(11):2141-8. PubMed ID: 20478561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of limited nutrition on in situ intervertebral disc cells under simulated-physiological loading.
    Jünger S; Gantenbein-Ritter B; Lezuo P; Alini M; Ferguson SJ; Ito K
    Spine (Phila Pa 1976); 2009 May; 34(12):1264-71. PubMed ID: 19455001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear mechanical properties of human lumbar annulus fibrosus.
    Iatridis JC; Kumar S; Foster RJ; Weidenbaum M; Mow VC
    J Orthop Res; 1999 Sep; 17(5):732-7. PubMed ID: 10569484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability.
    Périé D; Korda D; Iatridis JC
    J Biomech; 2005 Nov; 38(11):2164-71. PubMed ID: 16154403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable MEMS compressive stress sensors: Design, fabrication and calibration with application to the disc annulus.
    Glos DL; Sauser FE; Papautsky I; Bylski-Austrow DI
    J Biomech; 2010 Aug; 43(11):2244-8. PubMed ID: 20451207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Characterization of intervertebral disc--disc cells and pericellular microenvironment].
    Sato M; Yamamoto Y; Sakai D; Mochida J
    Clin Calcium; 2004 Jul; 14(7):64-9. PubMed ID: 15577078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species.
    Henriksson H; Thornemo M; Karlsson C; Hägg O; Junevik K; Lindahl A; Brisby H
    Spine (Phila Pa 1976); 2009 Oct; 34(21):2278-87. PubMed ID: 19755937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of a stem cell therapy for intervertebral disc degeneration.
    Sobajima S; Vadala G; Shimer A; Kim JS; Gilbertson LG; Kang JD
    Spine J; 2008; 8(6):888-96. PubMed ID: 18082460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell polarity in the anulus of the human intervertebral disc: morphologic, immunocytochemical, and molecular evidence.
    Gruber HE; Ingram J; Hoelscher GL; Norton HJ; Hanley EN
    Spine (Phila Pa 1976); 2007 May; 32(12):1287-94. PubMed ID: 17515816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A synthetic peptide of link protein stimulates the biosynthesis of collagens II, IX and proteoglycan by cells of the intervertebral disc.
    Mwale F; Demers CN; Petit A; Roughley P; Poole AR; Steffen T; Aebi M; Antoniou J
    J Cell Biochem; 2003 Apr; 88(6):1202-13. PubMed ID: 12647302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zonal responsiveness of the human intervertebral disc to bone morphogenetic protein-2.
    Kim H; Lee JU; Moon SH; Kim HC; Kwon UH; Seol NH; Kim HJ; Park JO; Chun HJ; Kwon IK; Lee HM
    Spine (Phila Pa 1976); 2009 Aug; 34(17):1834-8. PubMed ID: 19644335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.