These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20598702)

  • 1. Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides.
    González AG; Shirokova LS; Pokrovsky OS; Emnova EE; Martínez RE; Santana-Casiano JM; González-Dávila M; Pokrovski GS
    J Colloid Interface Sci; 2010 Oct; 350(1):305-14. PubMed ID: 20598702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical and structural status of copper associated with oxygenic and anoxygenic phototrophs and heterotrophs: possible evolutionary consequences.
    Pokrovsky OS; Pokrovski GS; Shirokova LS; Gonzalez AG; Emnova EE; Feurtet-Mazel A
    Geobiology; 2012 Mar; 10(2):130-49. PubMed ID: 22039921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decrease in zinc adsorption onto soil in the presence of EPS-rich and EPS-poor Pseudomonas aureofaciens.
    Drozdova OY; Pokrovsky OS; Lapitskiy SA; Shirokova LS; González AG; Demin VV
    J Colloid Interface Sci; 2014 Dec; 435():59-66. PubMed ID: 25218048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium, Pseudomonas putida.
    Pabst MW; Miller CD; Dimkpa CO; Anderson AJ; McLean JE
    Chemosphere; 2010 Nov; 81(7):904-10. PubMed ID: 20797767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites.
    Fang L; Huang Q; Wei X; Liang W; Rong X; Chen W; Cai P
    Bioresour Technol; 2010 Aug; 101(15):5774-9. PubMed ID: 20227874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida.
    Fang L; Wei X; Cai P; Huang Q; Chen H; Liang W; Rong X
    Bioresour Technol; 2011 Jan; 102(2):1137-41. PubMed ID: 20869870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations.
    Ojeda JJ; Romero-Gonzalez ME; Bachmann RT; Edyvean RG; Banwart SA
    Langmuir; 2008 Apr; 24(8):4032-40. PubMed ID: 18302422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling.
    Heidmann I; Christl I; Leu C; Kretzschmar R
    J Colloid Interface Sci; 2005 Feb; 282(2):270-82. PubMed ID: 15589531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface complexation of Neptunium(V) onto whole cells and cell components of Shewanella alga: modeling and experimental study.
    Deo RP; Songkasiri W; Rittmann BE; Reed DT
    Environ Sci Technol; 2010 Jul; 44(13):4930-5. PubMed ID: 20521812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data.
    Liu H; Fang HH
    Biotechnol Bioeng; 2002 Dec; 80(7):806-11. PubMed ID: 12402326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution.
    Kantar C; Demiray H; Dogan NM; Dodge CJ
    Chemosphere; 2011 Mar; 82(10):1489-95. PubMed ID: 21272912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption characteristics of Cu and Ni on Irish peat moss.
    Sen Gupta B; Curran M; Hasan S; Ghosh TK
    J Environ Manage; 2009 Feb; 90(2):954-60. PubMed ID: 18430507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid.
    Hizal J; Apak R
    J Colloid Interface Sci; 2006 Mar; 295(1):1-13. PubMed ID: 16168423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption behavior of copper ions on Mucor rouxii biomass through microscopic and FTIR analysis.
    Majumdar SS; Das SK; Saha T; Panda GC; Bandyopadhyoy T; Guha AK
    Colloids Surf B Biointerfaces; 2008 May; 63(1):138-45. PubMed ID: 18296032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values.
    Comte S; Guibaud G; Baudu M
    J Hazard Mater; 2008 Feb; 151(1):185-93. PubMed ID: 17611021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil pH and anion abundance affects on copper adsorption.
    Alva AK; Baugh TJ; Sajwan KS; Paramasivam S
    J Environ Sci Health B; 2004; 39(5-6):903-10. PubMed ID: 15620095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter.
    Jönsson J; Sjöberg S; Lövgren L
    Water Res; 2006 Mar; 40(5):969-74. PubMed ID: 16487563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption removal of cadmium and copper from aqueous solution by areca: a food waste.
    Zheng W; Li XM; Wang F; Yang Q; Deng P; Zeng GM
    J Hazard Mater; 2008 Sep; 157(2-3):490-5. PubMed ID: 18313210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of ionic strength on the electrophoretic mobility and protonation constants of an EPS-producing bacterial strain.
    Tourney J; Ngwenya BT
    J Colloid Interface Sci; 2010 Aug; 348(2):348-54. PubMed ID: 20546767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.