These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 20598864)
1. Multi-technique approach on the effect of surfactant concentrations on the thermal unfolding of rabbit serum albumin: formation and solubilization of the protein aggregates. Ali MS; Khan JM; Aswal VK; Khan RH; Kabir-ud-Din Colloids Surf B Biointerfaces; 2010 Oct; 80(2):169-75. PubMed ID: 20598864 [TBL] [Abstract][Full Text] [Related]
2. Unfolding of rabbit serum albumin by cationic surfactants: surface tensiometry, small-angle neutron scattering, intrinsic fluorescence, resonance Rayleigh scattering and circular dichroism studies. Ali MS; Gull N; Khan JM; Aswal VK; Khan RH; Kabir-ud-Din J Colloid Interface Sci; 2010 Dec; 352(2):436-43. PubMed ID: 20864116 [TBL] [Abstract][Full Text] [Related]
3. Interaction of bovine (BSA), rabbit (RSA), and porcine (PSA) serum albumins with cationic single-chain/gemini surfactants: a comparative study. Gull N; Sen P; Khan RH; Kabir-ud-Din Langmuir; 2009 Oct; 25(19):11686-91. PubMed ID: 19788221 [TBL] [Abstract][Full Text] [Related]
4. Spectroscopic studies on the interaction of cationic surfactants with bovine serum albumin. Gull N; Chodankar S; Aswal VK; Sen P; Khan RH; Kabir-ud-Din Colloids Surf B Biointerfaces; 2009 Feb; 69(1):122-8. PubMed ID: 19118987 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic studies on the comparative interaction of cationic single-chain and gemini surfactants with human serum albumin. Gull N; Sen P; Khan RH; Kabir-Ud-Din J Biochem; 2009 Jan; 145(1):67-77. PubMed ID: 18974157 [TBL] [Abstract][Full Text] [Related]
6. The multi-spectroscopic approach on the interaction between rabbit serum albumin and cationic surfactant: Investigation on the formation and solubilization of the protein aggregation. Srivastava R; Alam MS Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 239():118542. PubMed ID: 32502807 [TBL] [Abstract][Full Text] [Related]
7. Sticholysins I and II interaction with cationic micelles promotes toxins' conformational changes and enhanced hemolytic activity. Lanio ME; Alvarez C; Ochoa C; Ros U; Pazos F; Martínez D; Tejuca M; Eugenio LM; Casallanovo F; Dyszy FH; Schreier S; Lissi E Toxicon; 2007 Nov; 50(6):731-9. PubMed ID: 17681582 [TBL] [Abstract][Full Text] [Related]
8. Interaction of bovine serum albumin with cationic single chain+nonionic and cationic gemini+nonionic binary surfactant mixtures. Mir MA; Gull N; Khan JM; Khan RH; Dar AA; Rather GM J Phys Chem B; 2010 Mar; 114(9):3197-204. PubMed ID: 20148530 [TBL] [Abstract][Full Text] [Related]
9. Physicochemical studies on the interaction of gelatin with cationic surfactants alkyltrimethylammonium Bromides (ATABs) with special focus on the behavior of the hexadecyl homologue. Mitra D; Bhattacharya SC; Moulik SP J Phys Chem B; 2008 May; 112(21):6609-19. PubMed ID: 18461905 [TBL] [Abstract][Full Text] [Related]
10. Characterization of different conformations of bovine serum albumin and their propensity to aggregate in the presence of N-cetyl-N,N,N-trimethyl ammonium bromide. Sharma A; Agarwal PK; Deep S J Colloid Interface Sci; 2010 Mar; 343(2):454-62. PubMed ID: 20056228 [TBL] [Abstract][Full Text] [Related]
11. Protective effects of small amounts of bis(2-ethylhexyl)sulfosuccinate on the helical structures of human and bovine serum albumins in their thermal denaturations. Moriyama Y; Takeda K Langmuir; 2005 Jun; 21(12):5524-8. PubMed ID: 15924484 [TBL] [Abstract][Full Text] [Related]
12. Interaction between 14mer DNA oligonucleotide and cationic surfactants of various chain lengths. Jadhav VM; Valaske R; Maiti S J Phys Chem B; 2008 Jul; 112(29):8824-31. PubMed ID: 18582102 [TBL] [Abstract][Full Text] [Related]
13. Probing lysozyme conformation with light reveals a new folding intermediate. Hamill AC; Wang SC; Lee CT Biochemistry; 2005 Nov; 44(46):15139-49. PubMed ID: 16285717 [TBL] [Abstract][Full Text] [Related]
14. Structural evolution during protein denaturation as induced by different methods. Chodankar S; Aswal VK; Kohlbrecher J; Vavrin R; Wagh AG Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031901. PubMed ID: 18517416 [TBL] [Abstract][Full Text] [Related]
15. Characterization of partially folded intermediates of papain in presence of cationic, anionic, and nonionic detergents at low pH. Naeem A; Fatima S; Khan RH Biopolymers; 2006 Sep; 83(1):1-10. PubMed ID: 16598711 [TBL] [Abstract][Full Text] [Related]
16. Energetics of the interactions of human serum albumin with cationic surfactant. Bordbar AK; Taheri-Kafrani A; Mousavi SH; Haertlé T Arch Biochem Biophys; 2008 Feb; 470(2):103-10. PubMed ID: 18068661 [TBL] [Abstract][Full Text] [Related]
17. Effect of spacer length of alkanediyl-alpha,omega-bis(dimethylcetylammonium bromide) gemini homologues on the interfacial and physicochemical properties of BSA. Mir MA; Khan JM; Khan RH; Rather GM; Dar AA Colloids Surf B Biointerfaces; 2010 May; 77(1):54-9. PubMed ID: 20116217 [TBL] [Abstract][Full Text] [Related]
18. Interaction of a Rhodococcus sp. trehalose lipid biosurfactant with model proteins: thermodynamic and structural changes. Zaragoza A; Teruel JA; Aranda FJ; Marqués A; Espuny MJ; Manresa Á; Ortiz A Langmuir; 2012 Jan; 28(2):1381-90. PubMed ID: 22172005 [TBL] [Abstract][Full Text] [Related]
20. How do surfactants and DTT affect the size, dynamics, activity and growth of soluble lysozyme aggregates? Kumar S; Ravi VK; Swaminathan R Biochem J; 2008 Oct; 415(2):275-88. PubMed ID: 18549353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]