These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 2059920)

  • 41. Succinic acid production from cellobiose by Actinobacillus succinogenes.
    Jiang M; Xu R; Xi YL; Zhang JH; Dai WY; Wan YJ; Chen KQ; Wei P
    Bioresour Technol; 2013 May; 135():469-74. PubMed ID: 23186686
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strategies that ruminal bacteria use to handle excess carbohydrate.
    Russell JB
    J Anim Sci; 1998 Jul; 76(7):1955-63. PubMed ID: 9690652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrogen-mediated mannose uptake in Azotobacter vinelandii.
    Maier RJ; Prosser J
    J Bacteriol; 1988 Apr; 170(4):1986-9. PubMed ID: 3350796
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of pH and Monensin on Glucose Transport by Fibrobacter succinogenes, a Cellulolytic Ruminal Bacterium.
    Chow JM; Russell JB
    Appl Environ Microbiol; 1992 Apr; 58(4):1115-20. PubMed ID: 16348682
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Magnesium requirement of some of the principal rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    Animal; 2014 Sep; 8(9):1427-32. PubMed ID: 24846132
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cellulose digestion and cellulase regulation and distribution in Fibrobacter succinogenes subsp. succinogenes S85.
    Huang L; Forsberg CW
    Appl Environ Microbiol; 1990 May; 56(5):1221-8. PubMed ID: 2339881
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of growth and starvation on the lysis of the ruminal cellulolytic bacterium Fibrobacter succinogenes.
    Wells JE; Russell JB
    Appl Environ Microbiol; 1996 Apr; 62(4):1342-6. PubMed ID: 8919795
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of the individual glucose uptake systems of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease.
    Castro R; Neves AR; Fonseca LL; Pool WA; Kok J; Kuipers OP; Santos H
    Mol Microbiol; 2009 Feb; 71(3):795-806. PubMed ID: 19054326
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Some effects of uncouplers and inhibitors on growth and electron transport in rumen bacteria.
    Dawson KA; Preziosi MC; Caldwell DR
    J Bacteriol; 1979 Aug; 139(2):384-92. PubMed ID: 457609
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glucose toxicity in Prevotella ruminicola: methylglyoxal accumulation and its effect on membrane physiology.
    Russell JB
    Appl Environ Microbiol; 1993 Sep; 59(9):2844-50. PubMed ID: 8215358
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of the cellobiose 2-epimerase gene in the genome of Bacteroides fragilis NCTC 9343.
    Senoura T; Taguchi H; Ito S; Hamada S; Matsui H; Fukiya S; Yokota A; Watanabe J; Wasaki J; Ito S
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):400-6. PubMed ID: 19202279
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85.
    Iyo AH; Forsberg CW
    Appl Environ Microbiol; 1999 Mar; 65(3):995-8. PubMed ID: 10049853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers.
    Kudo H; Cheng KJ; Costerton JW
    Can J Microbiol; 1987 Mar; 33(3):267-72. PubMed ID: 3567745
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages.
    Fondevila M; Dehority BA
    J Anim Sci; 1996 Mar; 74(3):678-84. PubMed ID: 8707727
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oligosaccharide synthesis in Fibrobacter succinogenes S85 and its modulation by the substrate.
    Nouaille R; Matulova M; Delort AM; Forano E
    FEBS J; 2005 May; 272(10):2416-27. PubMed ID: 15885092
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of carbon dioxide on growth and maltose fermentation by Bacteroides amylophilus.
    Caldwell DR; Keeney M; Van Soest PJ
    J Bacteriol; 1969 May; 98(2):668-76. PubMed ID: 5814705
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose.
    Yang F; Yang X; Li Z; Du C; Wang J; Li S
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):8903-15. PubMed ID: 25957152
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Endoglucanase activity and relative expression of glycoside hydrolase genes of Fibrobacter succinogenes S85 grown on different substrates.
    Béra-Maillet C; Gaudet G; Forano E
    Biochim Biophys Acta; 2000 Nov; 1543(1):77-85. PubMed ID: 11087943
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum.
    Julliand V; de Vaux A; Millet L; Fonty G
    Appl Environ Microbiol; 1999 Aug; 65(8):3738-41. PubMed ID: 10427077
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae.
    Li S; Du J; Sun J; Galazka JM; Glass NL; Cate JH; Yang X; Zhao H
    Mol Biosyst; 2010 Nov; 6(11):2129-32. PubMed ID: 20871937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.