BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 20599496)

  • 1. The β2-adrenoceptor agonist clenbuterol elicits neuroprotective, anti-inflammatory and neurotrophic actions in the kainic acid model of excitotoxicity.
    Gleeson LC; Ryan KJ; Griffin EW; Connor TJ; Harkin A
    Brain Behav Immun; 2010 Nov; 24(8):1354-61. PubMed ID: 20599496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroprotection of adenoviral-vector-mediated GDNF expression against kainic-acid-induced excitotoxicity in the rat hippocampus.
    Yoo YM; Lee CJ; Lee U; Kim YJ
    Exp Neurol; 2006 Aug; 200(2):407-17. PubMed ID: 16690057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus.
    Sumanont Y; Murakami Y; Tohda M; Vajragupta O; Watanabe H; Matsumoto K
    Biol Pharm Bull; 2007 Sep; 30(9):1732-9. PubMed ID: 17827730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noradrenaline acting at beta-adrenoceptors induces expression of IL-1beta and its negative regulators IL-1ra and IL-1RII, and drives an overall anti-inflammatory phenotype in rat cortex.
    McNamee EN; Griffin EW; Ryan KM; Ryan KJ; Heffernan S; Harkin A; Connor TJ
    Neuropharmacology; 2010; 59(1-2):37-48. PubMed ID: 20361987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethyl pyruvate attenuates kainic acid-induced neuronal cell death in the mouse hippocampus.
    Cho IH; Kim SW; Kim JB; Kim TK; Lee KW; Han PL; Lee JK
    J Neurosci Res; 2006 Nov; 84(7):1505-11. PubMed ID: 16958132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of kainic acid-induced changes in nitric oxide level and neuronal cell damage in the rat hippocampus by manganese complexes of curcumin and diacetylcurcumin.
    Sumanont Y; Murakami Y; Tohda M; Vajragupta O; Watanabe H; Matsumoto K
    Life Sci; 2006 Mar; 78(16):1884-91. PubMed ID: 16266725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice.
    Kim DH; Yoon BH; Jung WY; Kim JM; Park SJ; Park DH; Huh Y; Park C; Cheong JH; Lee KT; Shin CY; Ryu JH
    Neuropharmacology; 2010; 59(1-2):20-30. PubMed ID: 20363233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxic preconditioning attenuated in kainic acid-induced neurotoxicity in rat hippocampus.
    Chang AY; Wang CH; Chiu TH; Chi JW; Chen CF; Ho LT; Lin AM
    Exp Neurol; 2005 Sep; 195(1):40-8. PubMed ID: 15950222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency stimulation of the hippocampus protects against seizure activity and hippocampal neuronal apoptosis induced by kainic acid administration in macaques.
    Chen N; Gao Y; Yan N; Liu C; Zhang JG; Xing WM; Kong DM; Meng FG
    Neuroscience; 2014 Jan; 256():370-8. PubMed ID: 24200923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary anti-inflammatory actions of the β₂-adrenoceptor agonist clenbuterol and the glucocorticoid dexamethasone in rat brain.
    Ryan KJ; Griffin EW; Connor TJ
    J Neuroimmunol; 2011 Mar; 232(1-2):209-16. PubMed ID: 21035874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of beta2-adrenoceptors inhibits apoptosis in rat brain after transient forebrain ischemia.
    Zhu Y; Culmsee C; Semkova I; Krieglstein J
    J Cereb Blood Flow Metab; 1998 Sep; 18(9):1032-9. PubMed ID: 9740107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous BDNF protein is increased in adult rat hippocampus after a kainic acid induced excitotoxic insult but exogenous BDNF is not neuroprotective.
    Rudge JS; Mather PE; Pasnikowski EM; Cai N; Corcoran T; Acheson A; Anderson K; Lindsay RM; Wiegand SJ
    Exp Neurol; 1998 Feb; 149(2):398-410. PubMed ID: 9500963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protracted exposure to supraphysiological levels of corticosterone does not cause neuronal loss or damage and protects against kainic acid-induced neurotoxicity in the hippocampus of C57BL/6J mice.
    Benkovic SA; O'Callaghan JP; Miller DB
    Neurotoxicology; 2009 Nov; 30(6):965-76. PubMed ID: 19616023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective role of melatonin in domoic acid-induced neuronal damage in the hippocampus of adult rats.
    Ananth C; Gopalakrishnakone P; Kaur C
    Hippocampus; 2003; 13(3):375-87. PubMed ID: 12722978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise, but not environmental enrichment, improves learning after kainic acid-induced hippocampal neurodegeneration in association with an increase in brain-derived neurotrophic factor.
    Gobbo OL; O'Mara SM
    Behav Brain Res; 2005 Apr; 159(1):21-6. PubMed ID: 15794993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kainic acid-activated microglia mediate increased excitability of rat hippocampal neurons in vitro and in vivo: crucial role of interleukin-1beta.
    Zheng H; Zhu W; Zhao H; Wang X; Wang W; Li Z
    Neuroimmunomodulation; 2010; 17(1):31-8. PubMed ID: 19816055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gender differences in susceptibility to kainic acid-induced neurodegeneration in aged C57BL/6 mice.
    Zhang XM; Zhu SW; Duan RS; Mohammed AH; Winblad B; Zhu J
    Neurotoxicology; 2008 May; 29(3):406-12. PubMed ID: 18342945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained activation of Akt by melatonin contributes to the protection against kainic acid-induced neuronal death in hippocampus.
    Lee SH; Chun W; Kong PJ; Han JA; Cho BP; Kwon OY; Lee HJ; Kim SS
    J Pineal Res; 2006 Jan; 40(1):79-85. PubMed ID: 16313502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotective effects of lactation against kainic acid treatment in the dorsal hippocampus of the rat.
    Vanoye-Carlo A; Morales T; Ramos E; Mendoza-Rodríguez A; Cerbón M
    Horm Behav; 2008 Jan; 53(1):112-23. PubMed ID: 17963758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dexmedetomidine protects neurons from kainic acid-induced excitotoxicity by activating BDNF signaling.
    Chiu KM; Lin TY; Lee MY; Lu CW; Wang MJ; Wang SJ
    Neurochem Int; 2019 Oct; 129():104493. PubMed ID: 31220473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.