BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 20599681)

  • 1. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase.
    Ramzan R; Staniek K; Kadenbach B; Vogt S
    Biochim Biophys Acta; 2010 Sep; 1797(9):1672-80. PubMed ID: 20599681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of mitochondrial membrane potential in ischemic heart failure.
    Kadenbach B; Ramzan R; Moosdorf R; Vogt S
    Mitochondrion; 2011 Sep; 11(5):700-6. PubMed ID: 21703366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual biochemical behaviour versus biological robustness: spotlight on the regulation of cytochrome c oxidase.
    Ramzan R; Weber P; Kadenbach B; Vogt S
    Adv Exp Med Biol; 2012; 748():265-81. PubMed ID: 22729862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New control of mitochondrial membrane potential and ROS formation--a hypothesis.
    Lee I; Bender E; Arnold S; Kadenbach B
    Biol Chem; 2001 Dec; 382(12):1629-36. PubMed ID: 11843176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial cytochrome c oxidase is inhibited by ATP only at very high ATP/ADP ratios.
    Ramzan R; Schaper AK; Weber P; Rhiel A; Siddiq MS; Vogt S
    Biol Chem; 2017 Jun; 398(7):737-750. PubMed ID: 27926476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degenerative diseases, oxidative stress and cytochrome c oxidase function.
    Kadenbach B; Ramzan R; Vogt S
    Trends Mol Med; 2009 Apr; 15(4):139-47. PubMed ID: 19303362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms.
    Kadenbach B; Ramzan R; Wen L; Vogt S
    Biochim Biophys Acta; 2010 Mar; 1800(3):205-12. PubMed ID: 19409964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular switch in cytochrome C oxidase turns on thermogenesis in heart at low work load.
    Belyanovich L; Arnold S; Köhnke D; Kadenbach B
    Biochem Biophys Res Commun; 1996 Dec; 229(2):485-7. PubMed ID: 8954924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic and extrinsic uncoupling of oxidative phosphorylation.
    Kadenbach B
    Biochim Biophys Acta; 2003 Jun; 1604(2):77-94. PubMed ID: 12765765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase.
    Arnold S; Kadenbach B
    Eur J Biochem; 1997 Oct; 249(1):350-4. PubMed ID: 9363790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High efficiency versus maximal performance--the cause of oxidative stress in eukaryotes: a hypothesis.
    Kadenbach B; Ramzan R; Vogt S
    Mitochondrion; 2013 Jan; 13(1):1-6. PubMed ID: 23178790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation.
    Bender E; Kadenbach B
    FEBS Lett; 2000 Jan; 466(1):130-4. PubMed ID: 10648827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases.
    Kadenbach B; Arnold S; Lee I; Hüttemann M
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):400-8. PubMed ID: 15100056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ischemic preconditioning results in an ATP-dependent inhibition of cytochrome C oxidase.
    Vogt S; Ramzan R; Weber P; Troitzsch D; Rhiel A; Sattler A; Irqsusi M; Ruppert V; Moosdorf R
    Shock; 2013 Nov; 40(5):407-13. PubMed ID: 23867523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria.
    Territo PR; French SA; Balaban RS
    Cell Calcium; 2001 Jul; 30(1):19-27. PubMed ID: 11396984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart.
    Pham T; Loiselle D; Power A; Hickey AJ
    Am J Physiol Cell Physiol; 2014 Sep; 307(6):C499-507. PubMed ID: 24920675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome c Oxidase Inhibition by ATP Decreases Mitochondrial ROS Production.
    Ramzan R; Dolga AM; Michels S; Weber P; Culmsee C; Rastan AJ; Vogt S
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of magnesium on calcium-induced depolarisation of mitochondrial transmembrane potential.
    Racay P
    Cell Biol Int; 2008 Jan; 32(1):136-45. PubMed ID: 17933560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP/ADP Turnover and Import of Glycolytic ATP into Mitochondria in Cancer Cells Is Independent of the Adenine Nucleotide Translocator.
    Maldonado EN; DeHart DN; Patnaik J; Klatt SC; Gooz MB; Lemasters JJ
    J Biol Chem; 2016 Sep; 291(37):19642-50. PubMed ID: 27458020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.