BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 20599687)

  • 1. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis.
    Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI
    Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of reversible membrane destabilisation induced by antimicrobial peptides derived from Australian frogs.
    Lee TH; Heng C; Separovic F; Aguilar MI
    Biochim Biophys Acta; 2014 Sep; 1838(9):2205-15. PubMed ID: 24593995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1.
    Lee TH; Hall KN; Swann MJ; Popplewell JF; Unabia S; Park Y; Hahm KS; Aguilar MI
    Biochim Biophys Acta; 2010 Mar; 1798(3):544-57. PubMed ID: 20100457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs.
    Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK
    Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN
    Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism.
    Fernandez DI; Le Brun AP; Whitwell TC; Sani MA; James M; Separovic F
    Phys Chem Chem Phys; 2012 Dec; 14(45):15739-51. PubMed ID: 23093307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs.
    Pan YL; Cheng JT; Hale J; Pan J; Hancock RE; Straus SK
    Biophys J; 2007 Apr; 92(8):2854-64. PubMed ID: 17259271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study.
    Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH
    Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proline facilitates membrane insertion of the antimicrobial peptide maculatin 1.1 via surface indentation and subsequent lipid disordering.
    Fernandez DI; Lee TH; Sani MA; Aguilar MI; Separovic F
    Biophys J; 2013 Apr; 104(7):1495-507. PubMed ID: 23561526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of acyl chain structure and bilayer phase state on binding and penetration of a supported lipid bilayer by HPA3.
    Hirst DJ; Lee TH; Swann MJ; Unabia S; Park Y; Hahm KS; Aguilar MI
    Eur Biophys J; 2011 Apr; 40(4):503-14. PubMed ID: 21222117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion.
    Hirst DJ; Lee TH; Kulkarni K; Wilce JA; Aguilar MI
    Biochim Biophys Acta; 2016 Aug; 1858(8):1841-9. PubMed ID: 27163492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control and role of pH in peptide-lipid interactions in oriented membrane samples.
    Misiewicz J; Afonin S; Ulrich AS
    Biochim Biophys Acta; 2015 Mar; 1848(3):833-41. PubMed ID: 25511586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane defects enhance the interaction of antimicrobial peptides, aurein 1.2 versus caerin 1.1.
    Fernandez DI; Sani MA; Miles AJ; Wallace BA; Separovic F
    Biochim Biophys Acta; 2013 Aug; 1828(8):1863-72. PubMed ID: 23506683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural effects of the antimicrobial peptide maculatin 1.1 on supported lipid bilayers.
    Fernandez DI; Le Brun AP; Lee TH; Bansal P; Aguilar MI; James M; Separovic F
    Eur Biophys J; 2013 Jan; 42(1):47-59. PubMed ID: 22354331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of a synthetic Leu-Lys-rich antimicrobial peptide with phospholipid bilayers.
    Fernandez DI; Sani MA; Gehman JD; Hahm KS; Separovic F
    Eur Biophys J; 2011 Apr; 40(4):471-80. PubMed ID: 21225256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer.
    Rai DK; Qian S
    Sci Rep; 2017 Jun; 7(1):3719. PubMed ID: 28623332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants.
    Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK
    Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of molecular architecture on the relative efficacy of aurein 2.5 and modelin 5.
    Dennison SR; Morton LH; Phoenix DA
    Biochim Biophys Acta; 2012 Sep; 1818(9):2094-102. PubMed ID: 22617856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein.
    Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA
    Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.