These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 20600164)
1. Optical clearing facilitates integrated 3D visualization of mouse ileal microstructure and vascular network with high definition. Fu YY; Tang SC Microvasc Res; 2010 Dec; 80(3):512-21. PubMed ID: 20600164 [TBL] [Abstract][Full Text] [Related]
2. Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution. Fu YY; Lin CW; Enikolopov G; Sibley E; Chiang AS; Tang SC Gastroenterology; 2009 Aug; 137(2):453-65. PubMed ID: 19447107 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution. Fu YY; Lu CH; Lin CW; Juang JH; Enikolopov G; Sibley E; Chiang AS; Tang SC J Biomed Opt; 2010; 15(4):046018. PubMed ID: 20799820 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy. Dickie R; Bachoo RM; Rupnick MA; Dallabrida SM; Deloid GM; Lai J; Depinho RA; Rogers RA Microvasc Res; 2006; 72(1-2):20-6. PubMed ID: 16806289 [TBL] [Abstract][Full Text] [Related]
5. Optical histology: a method to visualize microvasculature in thick tissue sections of mouse brain. Moy AJ; Wiersma MP; Choi B PLoS One; 2013; 8(1):e53753. PubMed ID: 23372668 [TBL] [Abstract][Full Text] [Related]
6. 3-D imaging and illustration of mouse intestinal neurovascular complex. Fu YY; Peng SJ; Lin HY; Pasricha PJ; Tang SC Am J Physiol Gastrointest Liver Physiol; 2013 Jan; 304(1):G1-11. PubMed ID: 23086917 [TBL] [Abstract][Full Text] [Related]
7. Dynamic in vivo imaging of microvasculature and perfusion by miniaturized confocal laser microscopy. Goetz M; Thomas S; Heimann A; Delaney P; Schneider C; Relle M; Schwarting A; Galle PR; Kempski O; Neurath MF; Kiesslich R Eur Surg Res; 2008; 41(3):290-7. PubMed ID: 18667833 [TBL] [Abstract][Full Text] [Related]
8. Fractal and image analysis of the microvasculature in normal intestinal submucosa and intestinal polyps in Apc(Min/+) mice. Fuseler JW; Bedenbaugh A; Yekkala K; Baudino TA Microsc Microanal; 2010 Feb; 16(1):73-9. PubMed ID: 20030910 [TBL] [Abstract][Full Text] [Related]
9. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing. Sakhalkar HS; Dewhirst M; Oliver T; Cao Y; Oldham M Phys Med Biol; 2007 Apr; 52(8):2035-54. PubMed ID: 17404454 [TBL] [Abstract][Full Text] [Related]
10. Vascular labeling of luminescent gold nanorods enables 3-D microscopy of mouse intestinal capillaries. Tang SC; Fu YY; Lo WF; Hua TE; Tuan HY ACS Nano; 2010 Oct; 4(10):6278-84. PubMed ID: 20886812 [TBL] [Abstract][Full Text] [Related]
11. New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Wearne SL; Rodriguez A; Ehlenberger DB; Rocher AB; Henderson SC; Hof PR Neuroscience; 2005; 136(3):661-80. PubMed ID: 16344143 [TBL] [Abstract][Full Text] [Related]
12. Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs. Tan W; Vinegoni C; Norman JJ; Desai TA; Boppart SA Microsc Res Tech; 2007 Apr; 70(4):361-71. PubMed ID: 17262787 [TBL] [Abstract][Full Text] [Related]
13. Optical clearing improves the imaging depth and signal-to-noise ratio for digital analysis and three-dimensional projection of the human enteric nervous system. Liu YA; Chen Y; Chiang AS; Peng SJ; Pasricha PJ; Tang SC Neurogastroenterol Motil; 2011 Oct; 23(10):e446-57. PubMed ID: 21895876 [TBL] [Abstract][Full Text] [Related]
14. Ultramicroscopy: 3D reconstruction of large microscopical specimens. Becker K; Jährling N; Kramer ER; Schnorrer F; Dodt HU J Biophotonics; 2008 Mar; 1(1):36-42. PubMed ID: 19343633 [TBL] [Abstract][Full Text] [Related]
15. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515 [TBL] [Abstract][Full Text] [Related]
16. High-definition mapping of neural activity using voltage-sensitive dyes. Cinelli AR Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional reconstruction of tumor microvasculature: simultaneous visualization of multiple components in paraffin-embedded tissue. Gijtenbeek JM; Wesseling P; Maass C; Burgers L; van der Laak JA Angiogenesis; 2005; 8(4):297-305. PubMed ID: 16328157 [TBL] [Abstract][Full Text] [Related]
19. Femtosecond two-photon high-resolution 3D imaging, spatial-volume rendering and microspectral characterization of immunolocalized MHC-II and mLangerin/CD207 antigens in the mouse epidermis. Tirlapur UK; Mulholland WJ; Bellhouse BJ; Kendall M; Cornhill JF; Cui Z Microsc Res Tech; 2006 Oct; 69(10):767-75. PubMed ID: 16941665 [TBL] [Abstract][Full Text] [Related]
20. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. Nagorni M; Hell SW J Struct Biol; 1998 Nov; 123(3):236-47. PubMed ID: 9878578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]