BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20600179)

  • 1. Probing the lifetimes of auditory novelty detection processes.
    Pegado F; Bekinschtein T; Chausson N; Dehaene S; Cohen L; Naccache L
    Neuropsychologia; 2010 Aug; 48(10):3145-54. PubMed ID: 20600179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total sleep deprivation and novelty processing: implications for frontal lobe functioning.
    Gosselin A; De Koninck J; Campbell KB
    Clin Neurophysiol; 2005 Jan; 116(1):211-22. PubMed ID: 15589199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction?
    Horváth J; Winkler I; Bendixen A
    Biol Psychol; 2008 Oct; 79(2):139-47. PubMed ID: 18468765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The temporal window of integration in elderly and young adults.
    Horváth J; Czigler I; Winkler I; Teder-Sälejärvi WA
    Neurobiol Aging; 2007 Jun; 28(6):964-75. PubMed ID: 16793177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evidence for differential roles of temporal and frontal components of auditory change detection.
    Shalgi S; Deouell LY
    Neuropsychologia; 2007 Apr; 45(8):1878-88. PubMed ID: 17239410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal regularity effects on pre-attentive and attentive processing of deviance.
    Schwartze M; Rothermich K; Schmidt-Kassow M; Kotz SA
    Biol Psychol; 2011 Apr; 87(1):146-51. PubMed ID: 21382437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mismatch negativity (MMN) in multiple sclerosis: an event-related potentials study in 46 patients.
    Jung J; Morlet D; Mercier B; Confavreux C; Fischer C
    Clin Neurophysiol; 2006 Jan; 117(1):85-93. PubMed ID: 16325469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory pre-attentive processing of Chinese tones.
    Yang LJ; Cao KL; Wei CG; Liu YZ
    Chin Med J (Engl); 2008 Dec; 121(23):2429-33. PubMed ID: 19102963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results.
    Opitz B; Rinne T; Mecklinger A; von Cramon DY; Schröger E
    Neuroimage; 2002 Jan; 15(1):167-74. PubMed ID: 11771985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change and novelty detection in speech and non-speech sound streams.
    Sorokin A; Alku P; Kujala T
    Brain Res; 2010 Apr; 1327():77-90. PubMed ID: 20188710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain dynamics in the auditory oddball task as a function of stimulus intensity and task requirements.
    Barry RJ; Rushby JA; Smith JL; Clarke AR; Croft RJ
    Int J Psychophysiol; 2009 Sep; 73(3):313-25. PubMed ID: 19460406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm.
    SanMiguel I; Corral MJ; Escera C
    J Cogn Neurosci; 2008 Jul; 20(7):1131-45. PubMed ID: 18284343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theta EEG oscillatory activity and auditory change detection.
    Fuentemilla L; Marco-Pallarés J; Münte TF; Grau C
    Brain Res; 2008 Jul; 1220():93-101. PubMed ID: 18076870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generators of the gamma-band activities in response to rare and novel stimuli during the auditory oddball paradigm.
    Lee B; Park KS; Kang DH; Kang KW; Kim YY; Kwon JS
    Neurosci Lett; 2007 Feb; 413(3):210-5. PubMed ID: 17208373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain responses reveal hardwired detection of native-language rule violations.
    Aaltonen O; Hellström A; Peltola MS; Savela J; Tamminen H; Lehtola H
    Neurosci Lett; 2008 Oct; 444(1):56-9. PubMed ID: 18706481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implicit, intuitive, and explicit knowledge of abstract regularities in a sound sequence: an event-related brain potential study.
    van Zuijen TL; Simoens VL; Paavilainen P; Näätänen R; Tervaniemi M
    J Cogn Neurosci; 2006 Aug; 18(8):1292-303. PubMed ID: 16859415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sustained deviance response evoked by the auditory oddball paradigm.
    Kretzschmar B; Gutschalk A
    Clin Neurophysiol; 2010 Apr; 121(4):524-32. PubMed ID: 20096627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortico-cortical phase synchrony in auditory mismatch processing.
    Hsiao FJ; Cheng CH; Liao KK; Lin YY
    Biol Psychol; 2010 May; 84(2):336-45. PubMed ID: 20380866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P3a and mismatch negativity in individuals with moderate Intermittent Explosive Disorder.
    Koelsch S
    Neurosci Lett; 2009 Aug; 460(1):21-6. PubMed ID: 19463896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suprasegmental speech cues are automatically processed by the human brain: a mismatch negativity study.
    Honbolygó F; Csépe V; Ragó A
    Neurosci Lett; 2004 Jun; 363(1):84-8. PubMed ID: 15158003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.