BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2060037)

  • 1. The mixture of aldehydes and hydrogen peroxide produced in the ozonation of dioleoyl phosphatidylcholine causes hemolysis of human red blood cells.
    Pryor WA; Miki M; Das B; Church DF
    Chem Biol Interact; 1991; 79(1):41-52. PubMed ID: 2060037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ozonation of unsaturated fatty acids: aldehydes and hydrogen peroxide as products and possible mediators of ozone toxicity.
    Pryor WA; Das B; Church DF
    Chem Res Toxicol; 1991; 4(3):341-8. PubMed ID: 1912318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of eicosanoid metabolism in human airway epithelial cells by ozonolysis products of membrane fatty acids.
    Leikauf GD; Zhao Q; Zhou S; Santrock J
    Res Rep Health Eff Inst; 1995 Sep; (71):1-15; discussion 19-26. PubMed ID: 11379054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid ozonation products activate phospholipases A2, C, and D.
    Kafoury RM; Pryor WA; Squadrito GL; Salgo MG; Zou X; Friedman M
    Toxicol Appl Pharmacol; 1998 Jun; 150(2):338-49. PubMed ID: 9653065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aldehydes, hydrogen peroxide, and organic radicals as mediators of ozone toxicity.
    Pryor WA; Church DF
    Free Radic Biol Med; 1991; 11(1):41-6. PubMed ID: 1937128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What does ozone react with at the air/lung interface? Model studies using human red blood cell membranes.
    Uppu RM; Cueto R; Squadrito GL; Pryor WA
    Arch Biochem Biophys; 1995 May; 319(1):257-66. PubMed ID: 7771793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O3-induced formation of bioactive lipids: estimated surface concentrations and lining layer effects.
    Postlethwait EM; Cueto R; Velsor LW; Pryor WA
    Am J Physiol; 1998 Jun; 274(6):L1006-16. PubMed ID: 9609740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozonation of PC in ethanol: separation and identification of a novel ethoxyhydroperoxide.
    Tagiri-Endo M; Ono K; Nakagawa K; Yotsu-Yamashita M; Miyazawa T
    Lipids; 2002 Oct; 37(10):1007-12. PubMed ID: 12530561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of ozone with phosphatidylcholine liposomes and the lytic effect of products on red blood cells.
    Teige B; McManus TT; Mudd JB
    Chem Phys Lipids; 1974 May; 12(3):153-71. PubMed ID: 4858129
    [No Abstract]   [Full Text] [Related]  

  • 10. Aspirin-induced hemolysis: the role of concomitant oxidant (H2O2) challenge.
    Stockman JA; Lubin B; Oski FA
    Pediatr Res; 1978 Sep; 12(9):927-31. PubMed ID: 714540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring by cis-parinaric fluorescence of free radical induced lipid peroxidation in aqueous liposome suspensions.
    Di Giulio A; Saletti A; Oratore A; Bozzi A
    J Microencapsul; 1996; 13(4):435-45. PubMed ID: 8808780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of aldehydes in bronchoalveolar lavage of rats exposed to ozone.
    Pryor WA; Bermúdez E; Cueto R; Squadrito GL
    Fundam Appl Toxicol; 1996 Nov; 34(1):148-56. PubMed ID: 8937902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of Aldehydic Phosphatidylcholines during the Anaerobic Decomposition of a Phosphatidylcholine Bearing the 9-Hydroperoxide of Linoleic Acid.
    Onyango AN
    Biomed Res Int; 2016; 2016():8218439. PubMed ID: 27366754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of the Criegee ozonide during the ozonation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes.
    Squadrito GL; Uppu RM; Cueto R; Pryor WA
    Lipids; 1992 Dec; 27(12):955-8. PubMed ID: 1487956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ozonolysis products of membrane fatty acids activate eicosanoid metabolism in human airway epithelial cells.
    Leikauf GD; Zhao Q; Zhou S; Santrock J
    Am J Respir Cell Mol Biol; 1993 Dec; 9(6):594-602. PubMed ID: 8257591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysis of erythrocytes by phosphatidylcholine containing polyunsaturated fatty acid.
    Kobayashi T; Takahashi K; Yamada A; Nojima S; Inoue K
    J Biochem; 1983 Mar; 93(3):675-80. PubMed ID: 6874658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ozonation of sunflower oils: impact of experimental conditions on the composition and the antibacterial activity of ozonized oils.
    Moureu S; Violleau F; Ali Haimoud-Lekhal D; Calmon A
    Chem Phys Lipids; 2015 Feb; 186():79-85. PubMed ID: 25623845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O
    Wang H; Zhan J; Yao W; Wang B; Deng S; Huang J; Yu G; Wang Y
    Water Res; 2018 Mar; 130():127-138. PubMed ID: 29216480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ascorbate on red blood cell lipid peroxidation.
    Einsele H; Clemens MR; Remmer H
    Free Radic Res Commun; 1985; 1(1):63-7. PubMed ID: 3880016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of phosphatidylcholine saturation in preventing bile salt toxicity to gastrointestinal epithelia and membranes.
    Dial EJ; Rooijakkers SH; Darling RL; Romero JJ; Lichtenberger LM
    J Gastroenterol Hepatol; 2008 Mar; 23(3):430-6. PubMed ID: 17868333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.