BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20600391)

  • 1. Cellular receptors, differentiation and endocytosis requirements are key factors for type I IFN response by human epithelial, conventional and plasmacytoid dendritic infected cells by measles virus.
    Duhen T; Herschke F; Azocar O; Druelle J; Plumet S; Delprat C; Schicklin S; Wild TF; Rabourdin-Combe C; Gerlier D; Valentin H
    Virus Res; 2010 Sep; 152(1-2):115-25. PubMed ID: 20600391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendritic cell subsets involved in type I IFN induction in mouse measles virus infection models.
    Takaki H; Oshiumi H; Matsumoto M; Seya T
    Int J Biochem Cell Biol; 2014 Aug; 53():329-33. PubMed ID: 24905956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-cell fusion induced by measles virus amplifies the type I interferon response.
    Herschke F; Plumet S; Duhen T; Azocar O; Druelle J; Laine D; Wild TF; Rabourdin-Combe C; Gerlier D; Valentin H
    J Virol; 2007 Dec; 81(23):12859-71. PubMed ID: 17898060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The MyD88 pathway in plasmacytoid and CD4+ dendritic cells primarily triggers type I IFN production against measles virus in a mouse infection model.
    Takaki H; Takeda M; Tahara M; Shingai M; Oshiumi H; Matsumoto M; Seya T
    J Immunol; 2013 Nov; 191(9):4740-7. PubMed ID: 24078691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measles virus receptors.
    Yanagi Y; Takeda M; Ohno S; Hashiguchi T
    Curr Top Microbiol Immunol; 2009; 329():13-30. PubMed ID: 19198560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measles virus targets DC-SIGN to enhance dendritic cell infection.
    de Witte L; Abt M; Schneider-Schaulies S; van Kooyk Y; Geijtenbeek TB
    J Virol; 2006 Apr; 80(7):3477-86. PubMed ID: 16537615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pathogenesis of measles revisited.
    de Swart RL
    Pediatr Infect Dis J; 2008 Oct; 27(10 Suppl):S84-8. PubMed ID: 18820585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection.
    Shingai M; Inoue N; Okuno T; Okabe M; Akazawa T; Miyamoto Y; Ayata M; Honda K; Kurita-Taniguchi M; Matsumoto M; Ogura H; Taniguchi T; Seya T
    J Immunol; 2005 Sep; 175(5):3252-61. PubMed ID: 16116216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus.
    Shingai M; Ebihara T; Begum NA; Kato A; Honma T; Matsumoto K; Saito H; Ogura H; Matsumoto M; Seya T
    J Immunol; 2007 Nov; 179(9):6123-33. PubMed ID: 17947687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measles virus receptors and tropism.
    Yanagi Y; Takeda M; Ohno S; Seki F
    Jpn J Infect Dis; 2006 Feb; 59(1):1-5. PubMed ID: 16495625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A correlation of measles specific antibodies and the number of plasmacytoid dendritic cells is observed after measles vaccination in 9 month old infants.
    García-León ML; Bonifaz LC; Espinosa-Torres B; Hernández-Pérez B; Cardiel-Marmolejo L; Santos-Preciado JI; Wong-Chew RM
    Hum Vaccin Immunother; 2015; 11(7):1762-9. PubMed ID: 26075901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane dynamics and interactions in measles virus dendritic cell infections.
    Avota E; Koethe S; Schneider-Schaulies S
    Cell Microbiol; 2013 Feb; 15(2):161-9. PubMed ID: 22963539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measles virus vaccine attenuation: suboptimal infection of lymphatic tissue and tropism alteration.
    Condack C; Grivel JC; Devaux P; Margolis L; Cattaneo R
    J Infect Dis; 2007 Aug; 196(4):541-9. PubMed ID: 17624839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic spread of measles virus: overcoming the epithelial and endothelial barriers.
    Ludlow M; Allen I; Schneider-Schaulies J
    Thromb Haemost; 2009 Dec; 102(6):1050-6. PubMed ID: 19967134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-to-Cell Contact and Nectin-4 Govern Spread of Measles Virus from Primary Human Myeloid Cells to Primary Human Airway Epithelial Cells.
    Singh BK; Li N; Mark AC; Mateo M; Cattaneo R; Sinn PL
    J Virol; 2016 Aug; 90(15):6808-6817. PubMed ID: 27194761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both type I and type III interferons are required to restrict measles virus growth in lung epithelial cells.
    Taniguchi M; Yanagi Y; Ohno S
    Arch Virol; 2019 Feb; 164(2):439-446. PubMed ID: 30390151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measles virus: immunomodulation and cell tropism as pathogenicity determinants.
    Schneider-Schaulies S; Schneider-Schaulies J; Niewiesk S; Ter Meulen V
    Med Microbiol Immunol; 2002 Oct; 191(2):83-7. PubMed ID: 12410346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression.
    Hahm B; Arbour N; Oldstone MB
    Virology; 2004 Jun; 323(2):292-302. PubMed ID: 15193925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measles virus vaccine-infected tumor cells induce tumor antigen cross-presentation by human plasmacytoid dendritic cells.
    Guillerme JB; Boisgerault N; Roulois D; Ménager J; Combredet C; Tangy F; Fonteneau JF; Gregoire M
    Clin Cancer Res; 2013 Mar; 19(5):1147-58. PubMed ID: 23339127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measles virus transmission from dendritic cells to T cells: formation of synapse-like interfaces concentrating viral and cellular components.
    Koethe S; Avota E; Schneider-Schaulies S
    J Virol; 2012 Sep; 86(18):9773-81. PubMed ID: 22761368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.