These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 20600736)

  • 1. Spontaneous otoacoustic emissions measured using an open ear-canal recording technique.
    Boul A; Lineton B
    Hear Res; 2010 Oct; 269(1-2):112-21. PubMed ID: 20600736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous otoacoustic emissions from normal human ears. Preliminary report.
    Cianfrone G; Mattia M
    Scand Audiol Suppl; 1986; 25():121-7. PubMed ID: 3472316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensating for deviant middle ear pressure in otoacoustic emission measurements, data, and comparison to a middle ear model.
    Hof JR; de Kleine E; Avan P; Anteunis LJ; Koopmans PJ; van Dijk P
    Otol Neurotol; 2012 Jun; 33(4):504-11. PubMed ID: 22569147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of middle-ear effusion on otoacoustic emissions.
    Yeo SW; Park SN; Park YS; Suh BD
    J Laryngol Otol; 2002 Oct; 116(10):794-9. PubMed ID: 12437833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ear canal reflectance in the presence of spontaneous otoacoustic emissions. I. Limit-cycle oscillator model.
    Tubis A; Talmadge CL
    J Acoust Soc Am; 1998 Jan; 103(1):454-61. PubMed ID: 9440332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How the cross-sectional discontinuity between ear canal and probe affects the ear canal length estimation.
    Zebian M; Hensel J; Fedtke T
    J Acoust Soc Am; 2012 Jul; 132(1):EL8-14. PubMed ID: 22779574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of otoacoustic emissions following ear-level exposure to MP3 player music.
    Bhagat SP; Davis AM
    Int J Audiol; 2008 Dec; 47(12):751-60. PubMed ID: 19085399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Results of a study of the presence of spontaneous otoacoustic emissions in the newborn].
    Sequi Canet JM; Mir Plana B; Paredes Cencillo C; Brines Solanes J; Marco Algarra J
    An Esp Pediatr; 1992 Aug; 37(2):121-5. PubMed ID: 1416536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The effect of systematic change in middle ear pressure on transitorily evoked otoacoustic emissions--a pressure chamber study].
    Hauser R
    Laryngorhinootologie; 1992 Dec; 71(12):632-6. PubMed ID: 1492889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distortion product otoacoustic emissions upon ear canal pressurization.
    Zebian M; Schirkonyer V; Hensel J; Vollbort S; Fedtke T; Janssen T
    J Acoust Soc Am; 2013 Apr; 133(4):EL331-7. PubMed ID: 23556700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency distribution of synchronized spontaneous otoacoustic emissions showing sex-dependent differences and asymmetry between ears in 2- to 4-day-old neonates.
    Liu J; Wang N; Li J; Shi B; Wang H
    Int J Pediatr Otorhinolaryngol; 2009 May; 73(5):731-6. PubMed ID: 19237204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A retrospective study of the spectral probability of spontaneous otoacoustic emissions: rise of octave shifted second mode after infancy.
    Braun M
    Hear Res; 2006 May; 215(1-2):39-46. PubMed ID: 16644155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spontaneous otoacoustic emissions and efferent control of cochlea].
    Xu J; Liu C; Guo L; Lian N; Liu B
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Dec; 36(6):436-40. PubMed ID: 12761959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous otoacoustic emissions in humans with endolymphatic hydrops.
    Haginomori SI; Makimoto K; Tanaka H; Araki M; Takenaka H
    Laryngoscope; 2001 Jan; 111(1):96-101. PubMed ID: 11192908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of static ear canal pressure on human spontaneous otoacoustic emissions: spectral width as a measure of the intra-cochlear oscillation amplitude.
    van Dijk P; Maat B; de Kleine E
    J Assoc Res Otolaryngol; 2011 Feb; 12(1):13-28. PubMed ID: 21061039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.
    Keefe DH; Feeney MP; Hunter LL; Fitzpatrick DF
    J Acoust Soc Am; 2017 Jan; 141(1):499. PubMed ID: 28147608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves.
    Meenderink SW; van der Heijden M
    J Neurophysiol; 2010 Mar; 103(3):1448-55. PubMed ID: 20089817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.