BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20600859)

  • 1. Diazotrophic growth of Rhodospirillum rubrum with 2-oxoglutarate as sole carbon source affects regulation of nitrogen metabolism as well as the soluble proteome.
    Teixeira PF; Selao TT; Henriksson V; Wang H; Norén A; Nordlund S
    Res Microbiol; 2010 Oct; 161(8):651-9. PubMed ID: 20600859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum.
    Zhang Y; Pohlmann EL; Roberts GP
    J Bacteriol; 2005 Feb; 187(4):1254-65. PubMed ID: 15687189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum.
    Zhang Y; Pohlmann EL; Ludden PW; Roberts GP
    J Bacteriol; 2000 Feb; 182(4):983-92. PubMed ID: 10648524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio.
    Teixeira PF; Jonsson A; Frank M; Wang H; Nordlund S
    Microbiology (Reading); 2008 Aug; 154(Pt 8):2336-2347. PubMed ID: 18667566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity.
    Zhang Y; Pohlmann EL; Conrad MC; Roberts GP
    Mol Microbiol; 2006 Jul; 61(2):497-510. PubMed ID: 16762025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activity of adenylyltransferase in Rhodospirillum rubrum is only affected by alpha-ketoglutarate and unmodified PII proteins, but not by glutamine, in vitro.
    Jonsson A; Teixeira PF; Nordlund S
    FEBS J; 2007 May; 274(10):2449-60. PubMed ID: 17419734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomic studies in Rhodospirillum rubrum grown under different nitrogen conditions.
    Selao TT; Nordlund S; Norén A
    J Proteome Res; 2008 Aug; 7(8):3267-75. PubMed ID: 18570453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Posttranslational modification of dinitrogenase reductase in Rhodospirillum rubrum treated with fluoroacetate.
    Akentieva N
    World J Microbiol Biotechnol; 2018 Nov; 34(12):184. PubMed ID: 30488133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derepression of nitrogenase by addition of malate to cultures of Rhodospirillum rubrum grown with glutamate as the carbon and nitrogen source.
    Hoover TR; Ludden PW
    J Bacteriol; 1984 Jul; 159(1):400-3. PubMed ID: 6145702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of P(II) and P(II)-UMP and in vitro studies of regulation of glutamine synthetase in Rhodospirillum rubrum.
    Johansson M; Nordlund S
    J Bacteriol; 1999 Oct; 181(20):6524-9. PubMed ID: 10515945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids.
    Rudolf C; Grammel H
    Enzyme Microb Technol; 2012 Apr; 50(4-5):238-46. PubMed ID: 22418264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE.
    Jonsson A; Nordlund S; Teixeira PF
    Res Microbiol; 2009 Oct; 160(8):581-4. PubMed ID: 19761831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive tricarboxylic acid cycle enzymes and reductive amino acid synthesis pathways contribute to electron balance in a
    McCully AL; Onyeziri MC; LaSarre B; Gliessman JR; McKinlay JB
    Microbiology (Reading); 2020 Feb; 166(2):199-211. PubMed ID: 31774392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pyruvate on the metabolic regulation of nitrogenase activity in Rhodospirillum rubrum in darkness.
    Selao TT; Edgren T; Wang H; Norén A; Nordlund S
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1834-1840. PubMed ID: 21393366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum.
    Zhang Y; Cummings AD; Burris RH; Ludden PW; Roberts GP
    J Bacteriol; 1995 Sep; 177(18):5322-6. PubMed ID: 7665521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Rhodospirillum rubrum GlnB variants that are altered in their ability to interact with different targets in response to nitrogen status signals.
    Zhu Y; Conrad MC; Zhang Y; Roberts GP
    J Bacteriol; 2006 Mar; 188(5):1866-74. PubMed ID: 16484197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of P(II) and glutamine synthetase is regulated by P(II), the ntrBC products, and processing of the glnBA mRNA in Rhodospirillum rubrum.
    Cheng J; Johansson M; Nordlund S
    J Bacteriol; 1999 Oct; 181(20):6530-4. PubMed ID: 10515946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The photoproduction of H2 and NH4 fixed from N2 by a derepressed mutant of Rhodospirillum rubrum.
    Weare NM
    Biochim Biophys Acta; 1978 Jun; 502(3):486-94. PubMed ID: 418808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustaining N2-dependent growth in the presence of CO.
    Kerby RL; Roberts GP
    J Bacteriol; 2011 Feb; 193(3):774-7. PubMed ID: 21115659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Plasticity and Ethylmalonyl Coenzyme A Pathway during Acetate Assimilation in Rhodospirillum rubrum S1H under Photoheterotrophic Conditions.
    De Meur Q; Deutschbauer A; Koch M; Wattiez R; Leroy B
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.