These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 20600871)

  • 21. B cells and autoantibodies in the pathogenesis of multiple sclerosis and related inflammatory demyelinating diseases.
    McLaughlin KA; Wucherpfennig KW
    Adv Immunol; 2008; 98():121-49. PubMed ID: 18772005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis.
    Parker Harp CR; Archambault AS; Sim J; Ferris ST; Mikesell RJ; Koni PA; Shimoda M; Linington C; Russell JH; Wu GF
    J Immunol; 2015 Jun; 194(11):5077-84. PubMed ID: 25895531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunology of multiple sclerosis.
    Williams KC; Ulvestad E; Hickey WF
    Clin Neurosci; 1994; 2(3-4):229-45. PubMed ID: 7749893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. T cell mediated pathogenesis in EAE: Molecular mechanisms.
    Kurschus FC
    Biomed J; 2015; 38(3):183-93. PubMed ID: 25900928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Progress in unravelling the etiology of multiple sclerosis].
    Matsui M
    Rinsho Shinkeigaku; 2008 Nov; 48(11):849-52. PubMed ID: 19198098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development.
    Ben-Nun A; Kaushansky N; Kawakami N; Krishnamoorthy G; Berer K; Liblau R; Hohlfeld R; Wekerle H
    J Autoimmun; 2014 Nov; 54():33-50. PubMed ID: 25175979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myelin reactive T cells in the autoimmune pathogenesis of multiple sclerosis.
    Stinissen P; Medaer R; Raus J
    Mult Scler; 1998 Jun; 4(3):203-11. PubMed ID: 9762675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental allergic encephalomyelitis. T cell trafficking to the central nervous system in a resistant Thy-1 congenic mouse strain.
    Skundric DS; Huston K; Shaw M; Tse HY; Raine CS
    Lab Invest; 1994 Nov; 71(5):671-9. PubMed ID: 7526038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciphering the Role of B Cells in Multiple Sclerosis-Towards Specific Targeting of Pathogenic Function.
    Lehmann-Horn K; Kinzel S; Weber MS
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28946620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of B cells in multiple sclerosis: rationale for B-cell-targeted therapies.
    Racke MK
    Curr Opin Neurol; 2008 Apr; 21 Suppl 1():S9-S18. PubMed ID: 18388801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clonally expanded plasma cells in the cerebrospinal fluid of MS patients produce myelin-specific antibodies.
    von Büdingen HC; Harrer MD; Kuenzle S; Meier M; Goebels N
    Eur J Immunol; 2008 Jul; 38(7):2014-23. PubMed ID: 18521957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls.
    Sun JB; Olsson T; Wang WZ; Xiao BG; Kostulas V; Fredrikson S; Ekre HP; Link H
    Eur J Immunol; 1991 Jun; 21(6):1461-8. PubMed ID: 1710567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis.
    Ray A; Mann MK; Basu S; Dittel BN
    J Neuroimmunol; 2011 Jan; 230(1-2):1-9. PubMed ID: 21145597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into the immunopathogenesis of multiple sclerosis.
    Hellings N; Raus J; Stinissen P
    Immunol Res; 2002; 25(1):27-51. PubMed ID: 11868933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Mechanisms involved in the regulation of immune response in experimental autoimmune encephalomyelitis in mice].
    Tutaj M; Szczepanik M
    Postepy Hig Med Dosw (Online); 2006; 60():571-83. PubMed ID: 17115007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence that Fas and FasL contribute to the pathogenesis of experimental autoimmune encephalomyelitis.
    Dittel BN
    Arch Immunol Ther Exp (Warsz); 2000; 48(5):381-8. PubMed ID: 11140465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exacerbation of experimental autoimmune encephalomyelitis by passive transfer of IgG antibodies from a multiple sclerosis patient responsive to immunoadsorption.
    Pedotti R; Musio S; Scabeni S; Farina C; Poliani PL; Colombo E; Costanza M; Berzi A; Castellucci F; Ciusani E; Confalonieri P; Hemmer B; Mantegazza R; Antozzi C
    J Neuroimmunol; 2013 Sep; 262(1-2):19-26. PubMed ID: 23768729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery.
    Samoilova EB; Horton JL; Chen Y
    Cell Immunol; 1998 Sep; 188(2):118-24. PubMed ID: 9756642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Ifng gene is essential for Vdr gene expression and vitamin D₃-mediated reduction of the pathogenic T cell burden in the central nervous system in experimental autoimmune encephalomyelitis, a multiple sclerosis model.
    Spanier JA; Nashold FE; Olson JK; Hayes CE
    J Immunol; 2012 Sep; 189(6):3188-97. PubMed ID: 22896638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Central nervous system infiltrates are characterized by features of ongoing B cell-related immune activity in MP4-induced experimental autoimmune encephalomyelitis.
    Batoulis H; Wunsch M; Birkenheier J; Rottlaender A; Gorboulev V; Kuerten S
    Clin Immunol; 2015 May; 158(1):47-58. PubMed ID: 25796192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.