BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20600893)

  • 1. Inducible macropinocytosis of hyaluronan in B16-F10 melanoma cells.
    Greyner HJ; Wiraszka T; Zhang LS; Petroll WM; Mummert ME
    Matrix Biol; 2010 Jul; 29(6):503-10. PubMed ID: 20600893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyaluronan on the surface of tumor cells is correlated with metastatic behavior.
    Zhang L; Underhill CB; Chen L
    Cancer Res; 1995 Jan; 55(2):428-33. PubMed ID: 7529138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of hepatocellular carcinomas in vitro and hepatic metastases in vivo in mice by the histone deacetylase inhibitor HA-But.
    Coradini D; Zorzet S; Rossin R; Scarlata I; Pellizzaro C; Turrin C; Bello M; Cantoni S; Speranza A; Sava G; Mazzi U; Perbellini A
    Clin Cancer Res; 2004 Jul; 10(14):4822-30. PubMed ID: 15269158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid.
    Ahrens T; Sleeman JP; Schempp CM; Howells N; Hofmann M; Ponta H; Herrlich P; Simon JC
    Oncogene; 2001 Jun; 20(26):3399-408. PubMed ID: 11423990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor microenvironment modulates hyaluronan expression: the lactate effect.
    Rudrabhatla SR; Mahaffey CL; Mummert ME
    J Invest Dermatol; 2006 Jun; 126(6):1378-87. PubMed ID: 16543892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells.
    Eliaz RE; Szoka FC
    Cancer Res; 2001 Mar; 61(6):2592-601. PubMed ID: 11289136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific de-N-glycosylation of CD44 can activate hyaluronan binding, and CD44 activation states show distinct threshold densities for hyaluronan binding.
    English NM; Lesley JF; Hyman R
    Cancer Res; 1998 Aug; 58(16):3736-42. PubMed ID: 9721887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G1 domain of aggrecan cointernalizes with hyaluronan via a CD44-mediated mechanism in bovine articular chondrocytes.
    Embry JJ; Knudson W
    Arthritis Rheum; 2003 Dec; 48(12):3431-41. PubMed ID: 14673994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion.
    Mohamadzadeh M; DeGrendele H; Arizpe H; Estess P; Siegelman M
    J Clin Invest; 1998 Jan; 101(1):97-108. PubMed ID: 9421471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyaluronic acid-CD44 interactions promote BMP4/7-dependent Id1/3 expression in melanoma cells.
    Wu RL; Sedlmeier G; Kyjacova L; Schmaus A; Philipp J; Thiele W; Garvalov BK; Sleeman JP
    Sci Rep; 2018 Oct; 8(1):14913. PubMed ID: 30297743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of iodinated hyaluronan derivatives to study hyaluronan binding, endocytosis, and metabolism by cultured cells.
    Weigel PH; McGary CT; Weigel JA
    Methods Enzymol; 2003; 363():382-91. PubMed ID: 14579591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional roles of hyaluronan in B16-F10 melanoma growth and experimental metastasis in mice.
    Mummert ME; Mummert DI; Ellinger L; Takashima A
    Mol Cancer Ther; 2003 Mar; 2(3):295-300. PubMed ID: 12657724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Inhibitory effect of tripeptide compound tyroservaltide on invasion and metastasis of mouse melanoma cell line B16-F10].
    Che XC; Lu R; Hu JX; Zheng MN; Zhang MF; Wang S; Yu CY; Yang XL; Xing DH; Yao Z
    Ai Zheng; 2006 Mar; 25(3):275-80. PubMed ID: 16536978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot study on the interaction between B16 melanoma cell-line and bone-marrow derived mesenchymal stem cells.
    Sun T; Sun BC; Ni CS; Zhao XL; Wang XH; Qie S; Zhang DF; Gu Q; Qi H; Zhao N
    Cancer Lett; 2008 May; 263(1):35-43. PubMed ID: 18234417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regression of established subcutaneous B16-F10 murine melanoma tumors after gef gene therapy associated with the mitochondrial apoptotic pathway.
    Prados J; Melguizo C; Ortiz R; Boulaiz H; Carrillo E; Segura A; Rodríguez-Herva JJ; Ramos JL; Aránega A
    Exp Dermatol; 2010 Apr; 19(4):363-71. PubMed ID: 19645856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells.
    Pohl M; Sakurai H; Stuart RO; Nigam SK
    Dev Biol; 2000 Aug; 224(2):312-25. PubMed ID: 10926769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endocytic hyaluronan receptor in rat liver sinusoidal endothelial cells is Ca(+2)-independent and distinct from a Ca(+2)-dependent hyaluronan binding activity.
    Yannariello-Brown J; McGary CT; Weigel PH
    J Cell Biochem; 1992 Jan; 48(1):73-80. PubMed ID: 1374758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decrease of polyamine levels and enhancement of transglutaminase activity in selective reduction of B16-F10 melanoma cell proliferation induced by atrial natriuretic peptide.
    Baldini PM; Lentini A; Mattioli P; Provenzano B; De Vito P; Vismara D; Beninati S
    Melanoma Res; 2006 Dec; 16(6):501-7. PubMed ID: 17119451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of functional CD44 hyaluronan receptor on human NMYC-amplified neuroblastoma cells.
    Gross N; Balmas K; Brognara CB
    Cancer Res; 1997 Apr; 57(7):1387-93. PubMed ID: 9102228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer.
    Udabage L; Brownlee GR; Nilsson SK; Brown TJ
    Exp Cell Res; 2005 Oct; 310(1):205-17. PubMed ID: 16125700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.