BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20600898)

  • 1. Reexamination of the mechanisms of oxidative transformation of the insect cuticular sclerotizing precursor, 1,2-dehydro-N-acetyldopamine.
    Abebe A; Zheng D; Evans J; Sugumaran M
    Insect Biochem Mol Biol; 2010 Sep; 40(9):650-9. PubMed ID: 20600898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of dehydro-N-acetyldopamine by a soluble enzyme preparation from the larval cuticle of Sarcophaga bullata involves intermediary formation of N-acetyldopamine quinone and N-acetyldopamine quinone methide.
    Saul SJ; Sugumaran M
    Arch Insect Biochem Physiol; 1990; 15(4):237-54. PubMed ID: 2134025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model reactions for insect cuticle sclerotization: cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols.
    Suderman RJ; Dittmer NT; Kanost MR; Kramer KJ
    Insect Biochem Mol Biol; 2006 Apr; 36(4):353-65. PubMed ID: 16551549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of activation of 1,2-dehydro-N-acetyldopamine for cuticular sclerotization.
    Sugumaran M; Schinkmann K; Dali H
    Arch Insect Biochem Physiol; 1990; 14(2):93-109. PubMed ID: 2134172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation chemistry of 1,2-dehydro-N-acetyldopamines: direct evidence for the formation of 1,2-dehydro-N-acetyldopamine quinone.
    Sugumaran M
    Arch Biochem Biophys; 2000 Jun; 378(2):404-10. PubMed ID: 10860558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling complex molecular transformations of N-β-alanyldopamine that account for brown coloration of insect cuticle.
    Barek H; Evans J; Sugumaran M
    Rapid Commun Mass Spectrom; 2017 Aug; 31(16):1363-1373. PubMed ID: 28557057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the formation of a quinone methide during the oxidation of the insect cuticular sclerotizing precursor 1,2-dehydro-N-acetyldopamine.
    Sugumaran M; Semensi V; Kalyanaraman B; Bruce JM; Land EJ
    J Biol Chem; 1992 May; 267(15):10355-61. PubMed ID: 1316899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspects of cuticular sclerotization in the locust, Scistocerca gregaria, and the beetle, Tenebrio molitor.
    Andersen SO; Roepstorff P
    Insect Biochem Mol Biol; 2007 Mar; 37(3):223-34. PubMed ID: 17296497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new mechanism for the control of phenoloxidase activity: inhibition and complex formation with quinone isomerase.
    Sugumaran M; Nellaiappan K; Valivittan K
    Arch Biochem Biophys; 2000 Jul; 379(2):252-60. PubMed ID: 10898942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-acetyldopamine quinone methide/1,2-dehydro-N-acetyl dopamine tautomerase. A new enzyme involved in sclerotization of insect cuticle.
    Saul SJ; Sugumaran M
    FEBS Lett; 1989 Sep; 255(2):340-4. PubMed ID: 2507358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model sclerotization studies. 3. Cuticular enzyme catalyzed oxidation of peptidyl model tyrosine and dopa derivatives.
    Sugumaran M; Ricketts D
    Arch Insect Biochem Physiol; 1995; 28(1):17-32. PubMed ID: 7803812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1,2-dehydro-N-beta-alanyldopamine as a new intermediate in insect cuticular sclerotization.
    Ricketts D; Sugumaran M
    J Biol Chem; 1994 Sep; 269(35):22217-21. PubMed ID: 8071347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of formation of arterenone in insect cuticular hydrolyzates.
    Sugumaran M; Abebe A; Oboite O; Zheng D
    Insect Biochem Mol Biol; 2013 Feb; 43(2):209-18. PubMed ID: 23274965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass spectrometric analysis of catechol-histidine adducts from insect cuticle.
    Kerwin JL; Turecek F; Xu R; Kramer KJ; Hopkins TL; Gatlin CL; Yates JR
    Anal Biochem; 1999 Mar; 268(2):229-37. PubMed ID: 10075812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the enzymes involved in puparial cuticle sclerotization in Drosophila melanogaster.
    Sugumaran M; Giglio L; Kundzicz H; Saul S; Semensi V
    Arch Insect Biochem Physiol; 1992; 19(4):271-83. PubMed ID: 1600191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine.
    Sugumaran M; Nelson E
    Arch Insect Biochem Physiol; 1998; 38(1):44-52. PubMed ID: 9589603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative determination of catecholic degradation products from insect sclerotized cuticles.
    Andersen SO
    Insect Biochem Mol Biol; 2008 Sep; 38(9):877-82. PubMed ID: 18675913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of endogenous and recombinant forms of laccase-2, a multicopper oxidase from the tobacco hornworm, Manduca sexta.
    Dittmer NT; Gorman MJ; Kanost MR
    Insect Biochem Mol Biol; 2009 Sep; 39(9):596-606. PubMed ID: 19576986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a new enzyme system that desaturates the side chain of N-acetyldopamine.
    Saul SJ; Sugumaran M
    FEBS Lett; 1989 Jul; 251(1-2):69-73. PubMed ID: 2753165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mechanism of side chain oxidation of N-beta-alanyldopamine by cuticular enzymes from Sarcophaga bullata.
    Sugumaran M; Saul SJ; Dali H
    Arch Insect Biochem Physiol; 1990; 15(4):255-69. PubMed ID: 2134026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.