BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 20600935)

  • 1. In vitro evolution and analysis of HIV-1 LTR-specific recombinases.
    Buchholz F; Hauber J
    Methods; 2011 Jan; 53(1):102-9. PubMed ID: 20600935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase.
    Mariyanna L; Priyadarshini P; Hofmann-Sieber H; Krepstakies M; Walz N; Grundhoff A; Buchholz F; Hildt E; Hauber J
    PLoS One; 2012; 7(2):e31576. PubMed ID: 22348110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolution of the tre recombinase.
    Buchholz F
    J Vis Exp; 2008 May; (15):. PubMed ID: 19066582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIV-1 proviral DNA excision using an evolved recombinase.
    Sarkar I; Hauber I; Hauber J; Buchholz F
    Science; 2007 Jun; 316(5833):1912-5. PubMed ID: 17600219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice.
    Hauber I; Hofmann-Sieber H; Chemnitz J; Dubrau D; Chusainow J; Stucka R; Hartjen P; Schambach A; Ziegler P; Hackmann K; Schröck E; Schumacher U; Lindner C; Grundhoff A; Baum C; Manz MG; Buchholz F; Hauber J
    PLoS Pathog; 2013; 9(9):e1003587. PubMed ID: 24086129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of 2-long terminal repeat (2-LTR) episomal HIV-1 DNA in raltegravir-treated patients and in in vitro infected cells.
    Reigadas S; Andréola ML; Wittkop L; Cosnefroy O; Anies G; Recordon-Pinson P; Thiébaut R; Masquelier B; Fleury H
    J Antimicrob Chemother; 2010 Mar; 65(3):434-7. PubMed ID: 20051476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity.
    Karpinski J; Hauber I; Chemnitz J; Schäfer C; Paszkowski-Rogacz M; Chakraborty D; Beschorner N; Hofmann-Sieber H; Lange UC; Grundhoff A; Hackmann K; Schrock E; Abi-Ghanem J; Pisabarro MT; Surendranath V; Schambach A; Lindner C; van Lunzen J; Hauber J; Buchholz F
    Nat Biotechnol; 2016 Apr; 34(4):401-9. PubMed ID: 26900663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic instability of a MoMLV-based antisense double-copy retroviral vector designed for HIV-1 gene therapy.
    Junker U; Böhnlein E; Veres G
    Gene Ther; 1995 Nov; 2(9):639-46. PubMed ID: 8548553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HIV-1 and HIV-2 produce different amounts of 2-long terminal repeat circular DNA in vitro.
    Gueudin M; Braun J; Plantier JC; Simon F
    AIDS; 2008 Nov; 22(18):2543-5. PubMed ID: 19005280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of genetic diversity reduction in the HIV-1 integrated proviral LTR sequence population during successful combination therapy.
    Ibáñez A; Clotet B; Martínez MA
    Virology; 2001 Mar; 282(1):1-5. PubMed ID: 11259184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time course of total HIV-1 DNA and 2-long-terminal repeat circles in patients with controlled plasma viremia switching to a raltegravir-containing regimen.
    Delaugerre C; Charreau I; Braun J; Néré ML; de Castro N; Yeni P; Ghosn J; Aboulker JP; Molina JM; Simon F;
    AIDS; 2010 Sep; 24(15):2391-5. PubMed ID: 20683319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of relative promoter strengths of the HIV-1-LTR and a chimeric RSV-LTR in T lymphocytic cells and peripheral blood mononuclear cells: promoters for anti-HIV-1 gene therapies.
    Mukhtar M; Duan L; Bagasra O; Pomerantz RJ
    Gene Ther; 1996 Aug; 3(8):725-30. PubMed ID: 8854098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interview: HIV-1 proviral DNA excision using an evolved recombinase.
    Hauber J
    J Vis Exp; 2008 Jun; (16):. PubMed ID: 19066545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TAT-mediated transcellular activation of HIV-1 long terminal repeat directed gene expression by HIV-1-infected peripheral blood mononuclear cells.
    Thomas CA; Dobkin J; Weinberger OK
    J Immunol; 1994 Oct; 153(8):3831-9. PubMed ID: 7930599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the human immunodeficiency virus type I long terminal repeat by 1 alpha,25-dihydroxyvitamin D3.
    Nevado J; Tenbaum SP; Castillo AI; Sánchez-Pacheco A; Aranda A
    J Mol Endocrinol; 2007 Jun; 38(6):587-601. PubMed ID: 17556530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuated and wild-type HIV-1 infections and long terminal repeat-mediated gene expression from plasmids delivered by gene gun to human skin ex vivo and macaques in vivo.
    Kent SJ; Cameron PU; Reece JC; Thompson PR; Purcell DF
    Virology; 2001 Aug; 287(1):71-8. PubMed ID: 11504543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of programmable zinc finger-recombinases with activity in human cells.
    Gordley RM; Smith JD; Gräslund T; Barbas CF
    J Mol Biol; 2007 Mar; 367(3):802-13. PubMed ID: 17289078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication.
    McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B
    Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of NF-kappaB and HIV-1 LTR activity in mouse L cells by ultraviolet radiation: LTR trans-activation in a nonirradiated genome in heterokaryons.
    Miller SC; Taylor A; Watanabe K; Mok K; Torti FM
    Exp Cell Res; 1997 Jan; 230(1):9-21. PubMed ID: 9013701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alu-LTR real-time nested PCR assay for quantifying integrated HIV-1 DNA.
    Brussel A; Delelis O; Sonigo P
    Methods Mol Biol; 2005; 304():139-54. PubMed ID: 16061972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.