BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 20600961)

  • 1. Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex.
    Bressler DW; Silver MA
    Neuroimage; 2010 Nov; 53(2):526-33. PubMed ID: 20600961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow Endogenous Fluctuations in Cortical fMRI Signals Correlate with Reduced Performance in a Visual Detection Task and Are Suppressed by Spatial Attention.
    Bressler DW; Rokem A; Silver MA
    J Cogn Neurosci; 2020 Jan; 32(1):85-99. PubMed ID: 31560268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographic maps of visual spatial attention in human parietal cortex.
    Silver MA; Ress D; Heeger DJ
    J Neurophysiol; 2005 Aug; 94(2):1358-71. PubMed ID: 15817643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinotopic maps, spatial tuning, and locations of human visual areas in surface coordinates characterized with multifocal and blocked FMRI designs.
    Henriksson L; Karvonen J; Salminen-Vaparanta N; Railo H; Vanni S
    PLoS One; 2012; 7(5):e36859. PubMed ID: 22590626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of sustained spatial attention in human early visual cortex.
    Silver MA; Ress D; Heeger DJ
    J Neurophysiol; 2007 Jan; 97(1):229-37. PubMed ID: 16971677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Retinotopic Basis for the Division of High-Level Scene Processing between Lateral and Ventral Human Occipitotemporal Cortex.
    Silson EH; Chan AW; Reynolds RC; Kravitz DJ; Baker CI
    J Neurosci; 2015 Aug; 35(34):11921-35. PubMed ID: 26311774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemispheric differences in frontal and parietal influences on human occipital cortex: direct confirmation with concurrent TMS-fMRI.
    Ruff CC; Blankenburg F; Bjoertomt O; Bestmann S; Weiskopf N; Driver J
    J Cogn Neurosci; 2009 Jun; 21(6):1146-61. PubMed ID: 18752395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attentional integration between anatomically distinct stimulus representations in early visual cortex.
    Haynes JD; Tregellas J; Rees G
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14925-30. PubMed ID: 16192359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide-field retinotopy reveals a new visuotopic cluster in macaque posterior parietal cortex.
    Rima S; Cottereau BR; Héjja-Brichard Y; Trotter Y; Durand JB
    Brain Struct Funct; 2020 Nov; 225(8):2447-2461. PubMed ID: 32875354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention.
    Bressler SL; Tang W; Sylvester CM; Shulman GL; Corbetta M
    J Neurosci; 2008 Oct; 28(40):10056-61. PubMed ID: 18829963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human V4 and ventral occipital retinotopic maps.
    Winawer J; Witthoft N
    Vis Neurosci; 2015 Jan; 32():E020. PubMed ID: 26241699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Identity-Preserving Object Transformations across the Human Ventral Visual Stream.
    Mocz V; Vaziri-Pashkam M; Chun MM; Xu Y
    J Neurosci; 2021 Sep; 41(35):7403-7419. PubMed ID: 34253629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback from human posterior parietal cortex enables visuospatial category representations as early as primary visual cortex.
    Li Y; Hu X; Yu Y; Zhao K; Saalmann YB; Wang L
    Brain Behav; 2018 Jan; 8(1):e00886. PubMed ID: 29568684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation?
    Romei V; Gross J; Thut G
    J Neurosci; 2010 Jun; 30(25):8692-7. PubMed ID: 20573914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of V3A and related areas in human visual cortex.
    Tootell RB; Mendola JD; Hadjikhani NK; Ledden PJ; Liu AK; Reppas JB; Sereno MI; Dale AM
    J Neurosci; 1997 Sep; 17(18):7060-78. PubMed ID: 9278542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the effects of feature salience and top-down attention in the early visual system.
    Poltoratski S; Ling S; McCormack D; Tong F
    J Neurophysiol; 2017 Jul; 118(1):564-573. PubMed ID: 28381491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delay-period activity in frontal, parietal, and occipital cortex tracks noise and biases in visual working memory.
    Yu Q; Panichello MF; Cai Y; Postle BR; Buschman TJ
    PLoS Biol; 2020 Sep; 18(9):e3000854. PubMed ID: 32898172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attention spotlight in V1-based cortico-cortical interactions in human visual hierarchy.
    Zhang Y; Zhang X; Lu X; Chen N
    Sci Rep; 2024 Jun; 14(1):13140. PubMed ID: 38849423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex.
    Somers DC; Dale AM; Seiffert AE; Tootell RB
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1663-8. PubMed ID: 9990081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging.
    Mendola JD; Dale AM; Fischl B; Liu AK; Tootell RB
    J Neurosci; 1999 Oct; 19(19):8560-72. PubMed ID: 10493756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.