These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 20601079)
1. Molecular mechanisms of bile duct development. Zong Y; Stanger BZ Int J Biochem Cell Biol; 2011 Feb; 43(2):257-64. PubMed ID: 20601079 [TBL] [Abstract][Full Text] [Related]
2. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. Lemaigre FP Annu Rev Pathol; 2020 Jan; 15():1-22. PubMed ID: 31299162 [TBL] [Abstract][Full Text] [Related]
3. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Hunter MP; Wilson CM; Jiang X; Cong R; Vasavada H; Kaestner KH; Bogue CW Dev Biol; 2007 Aug; 308(2):355-67. PubMed ID: 17580084 [TBL] [Abstract][Full Text] [Related]
4. Biliary differentiation and bile duct morphogenesis in development and disease. Raynaud P; Carpentier R; Antoniou A; Lemaigre FP Int J Biochem Cell Biol; 2011 Feb; 43(2):245-56. PubMed ID: 19735739 [TBL] [Abstract][Full Text] [Related]
5. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Clotman F; Lannoy VJ; Reber M; Cereghini S; Cassiman D; Jacquemin P; Roskams T; Rousseau GG; Lemaigre FP Development; 2002 Apr; 129(8):1819-28. PubMed ID: 11934848 [TBL] [Abstract][Full Text] [Related]
6. Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating notch activity. So J; Khaliq M; Evason K; Ninov N; Martin BL; Stainier DYR; Shin D Hepatology; 2018 Jun; 67(6):2352-2366. PubMed ID: 29266316 [TBL] [Abstract][Full Text] [Related]
7. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Poncy A; Antoniou A; Cordi S; Pierreux CE; Jacquemin P; Lemaigre FP Dev Biol; 2015 Aug; 404(2):136-48. PubMed ID: 26033091 [TBL] [Abstract][Full Text] [Related]
8. The developing human biliary system at the porta hepatis level between 11 and 25 weeks of gestation: a way to understanding biliary atresia. Part 2. Tan CE; Moscoso GJ Pathol Int; 1994 Aug; 44(8):600-10. PubMed ID: 7524952 [TBL] [Abstract][Full Text] [Related]
9. Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Khandekar G; Llewellyn J; Kriegermeier A; Waisbourd-Zinman O; Johnson N; Du Y; Giwa R; Liu X; Kisseleva T; Russo PA; Theise ND; Wells RG J Hepatol; 2020 Jan; 72(1):135-145. PubMed ID: 31562906 [TBL] [Abstract][Full Text] [Related]
10. Genetic interactions between hepatocyte nuclear factor-6 and Notch signaling regulate mouse intrahepatic bile duct development in vivo. Vanderpool C; Sparks EE; Huppert KA; Gannon M; Means AL; Huppert SS Hepatology; 2012 Jan; 55(1):233-43. PubMed ID: 21898486 [TBL] [Abstract][Full Text] [Related]
11. Induction of bile ducts in embryonic liver by mesenchyme: a new perspective for the treatment of biliary atresia? Petersen M; Drews U; Schweizer P Eur J Pediatr Surg; 2001 Dec; 11(6):382-90. PubMed ID: 11807667 [TBL] [Abstract][Full Text] [Related]
12. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Antoniou A; Raynaud P; Cordi S; Zong Y; Tronche F; Stanger BZ; Jacquemin P; Pierreux CE; Clotman F; Lemaigre FP Gastroenterology; 2009 Jun; 136(7):2325-33. PubMed ID: 19403103 [TBL] [Abstract][Full Text] [Related]
13. Intrahepatic cholangiocyte regeneration from an Fgf-dependent extrahepatic progenitor niche in a zebrafish model of Alagille Syndrome. Zhao C; Lancman JJ; Yang Y; Gates KP; Cao D; Barske L; Matalonga J; Pan X; He J; Graves A; Huisken J; Chen C; Dong PDS Hepatology; 2022 Mar; 75(3):567-583. PubMed ID: 34569629 [TBL] [Abstract][Full Text] [Related]
14. Immunolocalization of extracellular matrix components and integrins during mouse liver development. Shiojiri N; Sugiyama Y Hepatology; 2004 Aug; 40(2):346-55. PubMed ID: 15368439 [TBL] [Abstract][Full Text] [Related]
16. New clues for the developing human biliary system at the porta hepatis. Tan CE; Vijayan V J Hepatobiliary Pancreat Surg; 2001; 8(4):295-302. PubMed ID: 11521174 [TBL] [Abstract][Full Text] [Related]
17. Sox9b is a key regulator of pancreaticobiliary ductal system development. Delous M; Yin C; Shin D; Ninov N; Debrito Carten J; Pan L; Ma TP; Farber SA; Moens CB; Stainier DY PLoS Genet; 2012; 8(6):e1002754. PubMed ID: 22719264 [TBL] [Abstract][Full Text] [Related]
18. Distortion in TGF beta 1 peptide immunolocalization in biliary atresia: comparison with the normal pattern in the developing human intrahepatic bile duct system. Tan CE; Chan VS; Yong RY; Vijayan V; Tan WL; Fook Chong SM; Ho JM; Cheng HH Pathol Int; 1995 Nov; 45(11):815-24. PubMed ID: 8581144 [TBL] [Abstract][Full Text] [Related]
19. Expression of epithelial-cadherin, alpha-catenin and beta-catenin during human intrahepatic bile duct development: a possible role in bile duct morphogenesis. Terada T; Ashida K; Kitamura Y; Matsunaga Y; Takashima K; Kato M; Ohta T J Hepatol; 1998 Feb; 28(2):263-9. PubMed ID: 9514539 [TBL] [Abstract][Full Text] [Related]
20. The developing human biliary system at the porta hepatis level between 29 days and 8 weeks of gestation: a way to understanding biliary atresia. Part 1. Tan CE; Moscoso GJ Pathol Int; 1994 Aug; 44(8):587-99. PubMed ID: 7524951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]