BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 20601079)

  • 1. Molecular mechanisms of bile duct development.
    Zong Y; Stanger BZ
    Int J Biochem Cell Biol; 2011 Feb; 43(2):257-64. PubMed ID: 20601079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases.
    Lemaigre FP
    Annu Rev Pathol; 2020 Jan; 15():1-22. PubMed ID: 31299162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis.
    Hunter MP; Wilson CM; Jiang X; Cong R; Vasavada H; Kaestner KH; Bogue CW
    Dev Biol; 2007 Aug; 308(2):355-67. PubMed ID: 17580084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biliary differentiation and bile duct morphogenesis in development and disease.
    Raynaud P; Carpentier R; Antoniou A; Lemaigre FP
    Int J Biochem Cell Biol; 2011 Feb; 43(2):245-56. PubMed ID: 19735739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The onecut transcription factor HNF6 is required for normal development of the biliary tract.
    Clotman F; Lannoy VJ; Reber M; Cereghini S; Cassiman D; Jacquemin P; Roskams T; Rousseau GG; Lemaigre FP
    Development; 2002 Apr; 129(8):1819-28. PubMed ID: 11934848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating notch activity.
    So J; Khaliq M; Evason K; Ninov N; Martin BL; Stainier DYR; Shin D
    Hepatology; 2018 Jun; 67(6):2352-2366. PubMed ID: 29266316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts.
    Poncy A; Antoniou A; Cordi S; Pierreux CE; Jacquemin P; Lemaigre FP
    Dev Biol; 2015 Aug; 404(2):136-48. PubMed ID: 26033091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The developing human biliary system at the porta hepatis level between 11 and 25 weeks of gestation: a way to understanding biliary atresia. Part 2.
    Tan CE; Moscoso GJ
    Pathol Int; 1994 Aug; 44(8):600-10. PubMed ID: 7524952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury.
    Khandekar G; Llewellyn J; Kriegermeier A; Waisbourd-Zinman O; Johnson N; Du Y; Giwa R; Liu X; Kisseleva T; Russo PA; Theise ND; Wells RG
    J Hepatol; 2020 Jan; 72(1):135-145. PubMed ID: 31562906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic interactions between hepatocyte nuclear factor-6 and Notch signaling regulate mouse intrahepatic bile duct development in vivo.
    Vanderpool C; Sparks EE; Huppert KA; Gannon M; Means AL; Huppert SS
    Hepatology; 2012 Jan; 55(1):233-43. PubMed ID: 21898486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of bile ducts in embryonic liver by mesenchyme: a new perspective for the treatment of biliary atresia?
    Petersen M; Drews U; Schweizer P
    Eur J Pediatr Surg; 2001 Dec; 11(6):382-90. PubMed ID: 11807667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9.
    Antoniou A; Raynaud P; Cordi S; Zong Y; Tronche F; Stanger BZ; Jacquemin P; Pierreux CE; Clotman F; Lemaigre FP
    Gastroenterology; 2009 Jun; 136(7):2325-33. PubMed ID: 19403103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrahepatic cholangiocyte regeneration from an Fgf-dependent extrahepatic progenitor niche in a zebrafish model of Alagille Syndrome.
    Zhao C; Lancman JJ; Yang Y; Gates KP; Cao D; Barske L; Matalonga J; Pan X; He J; Graves A; Huisken J; Chen C; Dong PDS
    Hepatology; 2022 Mar; 75(3):567-583. PubMed ID: 34569629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunolocalization of extracellular matrix components and integrins during mouse liver development.
    Shiojiri N; Sugiyama Y
    Hepatology; 2004 Aug; 40(2):346-55. PubMed ID: 15368439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Notch signaling controls liver development by regulating biliary differentiation.
    Zong Y; Panikkar A; Xu J; Antoniou A; Raynaud P; Lemaigre F; Stanger BZ
    Development; 2009 May; 136(10):1727-39. PubMed ID: 19369401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New clues for the developing human biliary system at the porta hepatis.
    Tan CE; Vijayan V
    J Hepatobiliary Pancreat Surg; 2001; 8(4):295-302. PubMed ID: 11521174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sox9b is a key regulator of pancreaticobiliary ductal system development.
    Delous M; Yin C; Shin D; Ninov N; Debrito Carten J; Pan L; Ma TP; Farber SA; Moens CB; Stainier DY
    PLoS Genet; 2012; 8(6):e1002754. PubMed ID: 22719264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distortion in TGF beta 1 peptide immunolocalization in biliary atresia: comparison with the normal pattern in the developing human intrahepatic bile duct system.
    Tan CE; Chan VS; Yong RY; Vijayan V; Tan WL; Fook Chong SM; Ho JM; Cheng HH
    Pathol Int; 1995 Nov; 45(11):815-24. PubMed ID: 8581144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of epithelial-cadherin, alpha-catenin and beta-catenin during human intrahepatic bile duct development: a possible role in bile duct morphogenesis.
    Terada T; Ashida K; Kitamura Y; Matsunaga Y; Takashima K; Kato M; Ohta T
    J Hepatol; 1998 Feb; 28(2):263-9. PubMed ID: 9514539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The developing human biliary system at the porta hepatis level between 29 days and 8 weeks of gestation: a way to understanding biliary atresia. Part 1.
    Tan CE; Moscoso GJ
    Pathol Int; 1994 Aug; 44(8):587-99. PubMed ID: 7524951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.