These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 20601279)

  • 41. Structural basis for sirtuin function: what we know and what we don't.
    Sanders BD; Jackson B; Marmorstein R
    Biochim Biophys Acta; 2010 Aug; 1804(8):1604-16. PubMed ID: 19766737
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin.
    Schuetz A; Min J; Antoshenko T; Wang CL; Allali-Hassani A; Dong A; Loppnau P; Vedadi M; Bochkarev A; Sternglanz R; Plotnikov AN
    Structure; 2007 Mar; 15(3):377-89. PubMed ID: 17355872
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription.
    Rajendran R; Garva R; Krstic-Demonacos M; Demonacos C
    J Biomed Biotechnol; 2011; 2011():368276. PubMed ID: 21912480
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sirtuins inhibitors: the approach to affinity and selectivity.
    Cen Y
    Biochim Biophys Acta; 2010 Aug; 1804(8):1635-44. PubMed ID: 19931429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sirtuins: NAD(+)-dependent deacetylase mechanism and regulation.
    Sauve AA; Youn DY
    Curr Opin Chem Biol; 2012 Dec; 16(5-6):535-43. PubMed ID: 23102634
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases.
    Imai S; Guarente L
    Trends Pharmacol Sci; 2010 May; 31(5):212-20. PubMed ID: 20226541
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase.
    Imai S; Armstrong CM; Kaeberlein M; Guarente L
    Nature; 2000 Feb; 403(6771):795-800. PubMed ID: 10693811
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondrial sirtuins.
    Huang JY; Hirschey MD; Shimazu T; Ho L; Verdin E
    Biochim Biophys Acta; 2010 Aug; 1804(8):1645-51. PubMed ID: 20060508
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sirtuin Inhibitors: An Overview from Medicinal Chemistry Perspective.
    Yoon YK; Oon CE
    Anticancer Agents Med Chem; 2016; 16(8):1003-1016. PubMed ID: 26961318
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Novel Continuous Assay for the Deacylase Sirtuin 5 and Other Deacetylases.
    Roessler C; Tüting C; Meleshin M; Steegborn C; Schutkowski M
    J Med Chem; 2015 Sep; 58(18):7217-23. PubMed ID: 26308971
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition.
    Zhao X; Allison D; Condon B; Zhang F; Gheyi T; Zhang A; Ashok S; Russell M; MacEwan I; Qian Y; Jamison JA; Luz JG
    J Med Chem; 2013 Feb; 56(3):963-9. PubMed ID: 23311358
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sirtuins and NAD
    Kane AE; Sinclair DA
    Circ Res; 2018 Sep; 123(7):868-885. PubMed ID: 30355082
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The human sirtuin family: evolutionary divergences and functions.
    Vassilopoulos A; Fritz KS; Petersen DR; Gius D
    Hum Genomics; 2011 Jul; 5(5):485-96. PubMed ID: 21807603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity.
    Yang T; Sauve AA
    AAPS J; 2006 Oct; 8(4):E632-43. PubMed ID: 17233528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Histone deacetylase inhibitors that target tubulin.
    Schemies J; Sippl W; Jung M
    Cancer Lett; 2009 Aug; 280(2):222-32. PubMed ID: 19268440
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent advances in inhibitors of sirtuin1/2: an update and perspective.
    Zhou Z; Ma T; Zhu Q; Xu Y; Zha X
    Future Med Chem; 2018 Apr; 10(8):907-934. PubMed ID: 29642711
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5).
    Zhou Y; Zhang H; He B; Du J; Lin H; Cerione RA; Hao Q
    J Biol Chem; 2012 Aug; 287(34):28307-14. PubMed ID: 22767592
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cloning, chromosomal characterization and FISH mapping of the NAD(+)-dependent histone deacetylase gene sirtuin 5 in the mouse.
    Voelter-Mahlknecht S; Mahlknecht U
    Int J Oncol; 2013 Jul; 43(1):237-45. PubMed ID: 23673559
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 9-Fluorenylmethoxycarbonyl-labeled peptides as substrates in a capillary electrophoresis-based assay for sirtuin enzymes.
    Fan Y; Ludewig R; Scriba GK
    Anal Biochem; 2009 Apr; 387(2):243-8. PubMed ID: 19454228
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
    Zhao K; Harshaw R; Chai X; Marmorstein R
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8563-8. PubMed ID: 15150415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.