These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 20601430)

  • 21. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists.
    Balcazar DE; Vanrell MC; Romano PS; Pereira CA; Goldbaum FA; Bonomi HR; Carrillo C
    PLoS Negl Trop Dis; 2017 Apr; 11(4):e0005513. PubMed ID: 28406895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional characterization of LIT1, the Leishmania amazonensis ferrous iron transporter.
    Jacques I; Andrews NW; Huynh C
    Mol Biochem Parasitol; 2010 Mar; 170(1):28-36. PubMed ID: 20025906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive examination of charged intramembrane residues in a nucleoside transporter.
    Valdés R; Liu W; Ullman B; Landfear SM
    J Biol Chem; 2006 Aug; 281(32):22647-55. PubMed ID: 16769726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Key Residues for Urate Specific Transport in Human Glucose Transporter 9 (hSLC2A9).
    Long W; Panigrahi R; Panwar P; Wong K; O Neill D; Chen XZ; Lemieux MJ; Cheeseman CI
    Sci Rep; 2017 Jan; 7():41167. PubMed ID: 28117388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules.
    Salas-Burgos A; Iserovich P; Zuniga F; Vera JC; Fischbarg J
    Biophys J; 2004 Nov; 87(5):2990-9. PubMed ID: 15326030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of transmembrane segment 8 of the GLUT1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility.
    Mueckler M; Makepeace C
    J Biol Chem; 2004 Mar; 279(11):10494-9. PubMed ID: 14688257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity.
    Manolescu AR; Augustin R; Moley K; Cheeseman C
    Mol Membr Biol; 2007; 24(5-6):455-63. PubMed ID: 17710649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site.
    Seatter MJ; De la Rue SA; Porter LM; Gould GW
    Biochemistry; 1998 Feb; 37(5):1322-6. PubMed ID: 9477959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose transporters in parasitic protozoa.
    Landfear SM
    Methods Mol Biol; 2010; 637():245-62. PubMed ID: 20419439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proton-linked sugar transport systems in bacteria.
    Henderson PJ
    J Bioenerg Biomembr; 1990 Aug; 22(4):525-69. PubMed ID: 2172229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters.
    Deng D; Yan N
    Protein Sci; 2016 Mar; 25(3):546-58. PubMed ID: 26650681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model of the exofacial substrate-binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis.
    Mueckler M; Makepeace C
    Biochemistry; 2009 Jun; 48(25):5934-42. PubMed ID: 19449892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SLC5 and SLC2 transporters in epithelia-cellular role and molecular mechanisms.
    Raja M; Puntheeranurak T; Hinterdorfer P; Kinne R
    Curr Top Membr; 2012; 70():29-76. PubMed ID: 23177983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of glucose transport and cloning of a hexose transporter gene in Trypanosoma cruzi.
    Tetaud E; Bringaud F; Chabas S; Barrett MP; Baltz T
    Proc Natl Acad Sci U S A; 1994 Aug; 91(17):8278-82. PubMed ID: 8058795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Herbivory-induced glucose transporter gene expression in the brown planthopper, Nilaparvata lugens.
    Kikuta S; Nakamura Y; Hattori M; Sato R; Kikawada T; Noda H
    Insect Biochem Mol Biol; 2015 Sep; 64():60-7. PubMed ID: 26226652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding specificities and potential roles of isoforms of eukaryotic initiation factor 4E in Leishmania.
    Yoffe Y; Zuberek J; Lerer A; Lewdorowicz M; Stepinski J; Altmann M; Darzynkiewicz E; Shapira M
    Eukaryot Cell; 2006 Dec; 5(12):1969-79. PubMed ID: 17041189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of essential amino acids for glucose transporter 5 (GLUT5)-mediated fructose transport.
    Ebert K; Ewers M; Bisha I; Sander S; Rasputniac T; Daniel H; Antes I; Witt H
    J Biol Chem; 2018 Feb; 293(6):2115-2124. PubMed ID: 29259131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution to substrate recognition of two aromatic amino acid residues in putative transmembrane segment 10 of the yeast sugar transporters Gal2 and Hxt2.
    Kasahara M; Maeda M
    J Biol Chem; 1998 Oct; 273(44):29106-12. PubMed ID: 9786918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pentose phosphate metabolism in Leishmania mexicana.
    Maugeri DA; Cazzulo JJ; Burchmore RJ; Barrett MP; Ogbunude PO
    Mol Biochem Parasitol; 2003 Aug; 130(2):117-25. PubMed ID: 12946848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular, cellular and functional characterizations of a novel ICAM-like molecule of the immunoglobulin superfamily from Leishmania mexicana amazonensis.
    Chiang SC; Ali V; Huang AL; Chu KY; Tone Lee S
    Mol Biochem Parasitol; 2001 Feb; 112(2):263-75. PubMed ID: 11223133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.