BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20601461)

  • 1. Nonlinear lymphangion pressure-volume relationship minimizes edema.
    Venugopal AM; Stewart RH; Laine GA; Quick CM
    Am J Physiol Heart Circ Physiol; 2010 Sep; 299(3):H876-82. PubMed ID: 20601461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.
    Quick CM; Venugopal AM; Dongaonkar RM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2144-9. PubMed ID: 18326809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure.
    Bertram CD; Macaskill C; Moore JE
    J Biomech Eng; 2011 Jan; 133(1):011008. PubMed ID: 21186898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Lymphatic Vascular System: Does Nonuniform Lymphangion Length Limit Flow-Rate?
    Bertram CD
    J Biomech Eng; 2024 Sep; 146(9):. PubMed ID: 38558115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lymphangion coordination minimally affects mean flow in lymphatic vessels.
    Venugopal AM; Stewart RH; Laine GA; Dongaonkar RM; Quick CM
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1183-9. PubMed ID: 17468331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2016 Apr; 310(7):H847-60. PubMed ID: 26747501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lymphatic pump-conduit duality: contraction of postnodal lymphatic vessels inhibits passive flow.
    Quick CM; Ngo BL; Venugopal AM; Stewart RH
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H662-8. PubMed ID: 19122167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload.
    Davis MJ; Scallan JP; Wolpers JH; Muthuchamy M; Gashev AA; Zawieja DC
    Am J Physiol Heart Circ Physiol; 2012 Oct; 303(7):H795-808. PubMed ID: 22886407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
    Jamalian S; Bertram CD; Richardson WJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2013 Dec; 305(12):H1709-17. PubMed ID: 24124185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal postnodal lymphatic network structure that maximizes active propulsion of lymph.
    Venugopal AM; Quick CM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2009 Feb; 296(2):H303-9. PubMed ID: 19028799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network Scale Modeling of Lymph Transport and Its Effective Pumping Parameters.
    Jamalian S; Davis MJ; Zawieja DC; Moore JE
    PLoS One; 2016; 11(2):e0148384. PubMed ID: 26845031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between lymphangion chain length and maximum pressure generation established through in vivo imaging and computational modeling.
    Razavi MS; Nelson TS; Nepiyushchikh Z; Gleason RL; Dixon JB
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1249-H1260. PubMed ID: 28778909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pump efficacy in a two-dimensional, fluid-structure interaction model of a chain of contracting lymphangions.
    Elich H; Barrett A; Shankar V; Fogelson AL
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1941-1968. PubMed ID: 34275062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesenteric lymphatic vessels adapt to mesenteric venous hypertension by becoming weaker pumps.
    Dongaonkar RM; Nguyen TL; Quick CM; Heaps CL; Hardy J; Laine GA; Wilson E; Stewart RH
    Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(5):R391-9. PubMed ID: 25519727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of mesenteric lymphatic vessels to prolonged changes in transmural pressure.
    Dongaonkar RM; Nguyen TL; Quick CM; Hardy J; Laine GA; Wilson E; Stewart RH
    Am J Physiol Heart Circ Physiol; 2013 Jul; 305(2):H203-10. PubMed ID: 23666672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independent and interactive effects of preload and afterload on the pump function of the isolated lymphangion.
    Scallan JP; Wolpers JH; Muthuchamy M; Zawieja DC; Gashev AA; Davis MJ
    Am J Physiol Heart Circ Physiol; 2012 Oct; 303(7):H809-24. PubMed ID: 22865389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive pressure-diameter relationship and structural composition of rat mesenteric lymphangions.
    Rahbar E; Weimer J; Gibbs H; Yeh AT; Bertram CD; Davis MJ; Hill MA; Zawieja DC; Moore JE
    Lymphat Res Biol; 2012 Dec; 10(4):152-63. PubMed ID: 23145980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal lymphatic vessel structure.
    Venugopal AM; Stewart RH; Rajagopalan S; Laine GA; Quick CM
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():3700-3. PubMed ID: 17271097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contraction of collecting lymphatics: organization of pressure-dependent rate for multiple lymphangions.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1513-1532. PubMed ID: 29948540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic pump-conduit behavior of lymphangions.
    Quick CM; Venugopal AM; Gashev AA; Zawieja DC; Stewart RH
    Am J Physiol Regul Integr Comp Physiol; 2007 Apr; 292(4):R1510-8. PubMed ID: 17122333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.