These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 20601472)

  • 41. Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914.
    Kern G; Palmer T; Ehmann DE; Shapiro AB; Andrews B; Basarab GS; Doig P; Fan J; Gao N; Mills SD; Mueller J; Sriram S; Thresher J; Walkup GK
    J Biol Chem; 2015 Aug; 290(34):20984-20994. PubMed ID: 26149691
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preferential uptake of restriction fragments from a gonococcal cryptic plasmid by competent Neisseria gonorrhoeae.
    Burnstein KL; Dyer DW; Sparling PF
    J Gen Microbiol; 1988 Mar; 134(3):547-57. PubMed ID: 3141569
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis.
    Ambur OH; Frye SA; Nilsen M; Hovland E; Tønjum T
    PLoS One; 2012; 7(7):e39742. PubMed ID: 22768309
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mismatch correction modulates mutation frequency and pilus phase and antigenic variation in Neisseria gonorrhoeae.
    Criss AK; Bonney KM; Chang RA; Duffin PM; LeCuyer BE; Seifert HS
    J Bacteriol; 2010 Jan; 192(1):316-25. PubMed ID: 19854909
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On the role of pili in transformation of Neisseria gonorrhoeae.
    Mathis LS; Scocca JJ
    J Gen Microbiol; 1984 Dec; 130(12):3165-73. PubMed ID: 6151587
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Linearization of donor DNA during plasmid transformation in Neisseria gonorrhoeae.
    Biswas GD; Burnstein KL; Sparling PF
    J Bacteriol; 1986 Nov; 168(2):756-61. PubMed ID: 3096959
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Construction of a Neisseria gonorrhoeae MS11 derivative deficient in NgoMI restriction and modification.
    Stein DC; Chien R; Seifert HS
    J Bacteriol; 1992 Aug; 174(15):4899-906. PubMed ID: 1321116
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Requirement of novel competence genes pilT and pilU of Pseudomonas stutzeri for natural transformation and suppression of pilT deficiency by a hexahistidine tag on the type IV pilus protein PilAI.
    Graupner S; Weger N; Sohni M; Wackernagel W
    J Bacteriol; 2001 Aug; 183(16):4694-701. PubMed ID: 11466271
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An unusual Neisseria isolated from conjunctival cultures in rural Egypt.
    Mazloum H; Totten PA; Brooks GF; Dawson CR; Falkow S; James JF; Knapp JS; Koomey JM; Lammel CJ; Peters D
    J Infect Dis; 1986 Aug; 154(2):212-24. PubMed ID: 2873189
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Pilin N-terminal Domain Maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation.
    Obergfell KP; Seifert HS
    PLoS Genet; 2016 May; 12(5):e1006069. PubMed ID: 27213957
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pilus biogenesis gene, pilC, of Neisseria gonorrhoeae: pilC1 and pilC2 are each part of a larger duplication of the gonococcal genome and share upstream and downstream homologous sequences with opa and pil loci.
    Jonsson AB; Rahman M; Normark S
    Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2367-77. PubMed ID: 7581997
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dialects of the DNA uptake sequence in Neisseriaceae.
    Frye SA; Nilsen M; Tønjum T; Ambur OH
    PLoS Genet; 2013 Apr; 9(4):e1003458. PubMed ID: 23637627
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physical map of the chromosome of Neisseria gonorrhoeae FA1090 with locations of genetic markers, including opa and pil genes.
    Dempsey JA; Litaker W; Madhure A; Snodgrass TL; Cannon JG
    J Bacteriol; 1991 Sep; 173(17):5476-86. PubMed ID: 1679431
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel relaxase homologue is involved in chromosomal DNA processing for type IV secretion in Neisseria gonorrhoeae.
    Salgado-Pabón W; Jain S; Turner N; van der Does C; Dillard JP
    Mol Microbiol; 2007 Nov; 66(4):930-47. PubMed ID: 17927698
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system.
    Hamilton HL; Domínguez NM; Schwartz KJ; Hackett KT; Dillard JP
    Mol Microbiol; 2005 Mar; 55(6):1704-21. PubMed ID: 15752195
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Opa expression correlates with elevated transformation rates in Neisseria gonorrhoeae.
    Hill SA
    J Bacteriol; 2000 Jan; 182(1):171-8. PubMed ID: 10613877
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inversion of Moraxella lacunata type 4 pilin gene sequences by a Neisseria gonorrhoeae site-specific recombinase.
    Rozsa FW; Meyer TF; Fussenegger M
    J Bacteriol; 1997 Apr; 179(7):2382-8. PubMed ID: 9079926
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili.
    Stone BJ; Kwaik YA
    J Bacteriol; 1999 Mar; 181(5):1395-402. PubMed ID: 10049368
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Roles of the recJ and recN genes in homologous recombination and DNA repair pathways of Neisseria gonorrhoeae.
    Skaar EP; Lazio MP; Seifert HS
    J Bacteriol; 2002 Feb; 184(4):919-27. PubMed ID: 11807051
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Restriction of plasmid DNA during transformation but not conjugation in Neisseria gonorrhoeae.
    Stein DC; Gregoire S; Piekarowicz A
    Infect Immun; 1988 Jan; 56(1):112-6. PubMed ID: 2826333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.