These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 20601772)
1. Water calibration for CT scanners with tube voltage modulation. Ritschl L; Bergner F; Fleischmann C; Kachelriess M Phys Med Biol; 2010 Jul; 55(14):4107-17. PubMed ID: 20601772 [TBL] [Abstract][Full Text] [Related]
2. Empirical cupping correction: a first-order raw data precorrection for cone-beam computed tomography. Kachelriess M; Sourbelle K; Kalender WA Med Phys; 2006 May; 33(5):1269-74. PubMed ID: 16752561 [TBL] [Abstract][Full Text] [Related]
3. Empirical cupping correction for CT scanners with primary modulation (ECCP). Grimmer R; Fahrig R; Hinshaw W; Gao H; Kachelriess M Med Phys; 2012 Feb; 39(2):825-31. PubMed ID: 22320792 [TBL] [Abstract][Full Text] [Related]
4. A general framework of noise suppression in material decomposition for dual-energy CT. Petrongolo M; Dong X; Zhu L Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212 [TBL] [Abstract][Full Text] [Related]
5. A fast and pragmatic approach for scatter correction in flat-detector CT using elliptic modeling and iterative optimization. Meyer M; Kalender WA; Kyriakou Y Phys Med Biol; 2010 Jan; 55(1):99-120. PubMed ID: 20009184 [TBL] [Abstract][Full Text] [Related]
6. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT. Grimmer R; Kachelriess M Med Phys; 2011 Apr; 38(4):2233-40. PubMed ID: 21626957 [TBL] [Abstract][Full Text] [Related]
7. Empirical beam hardening correction (EBHC) for CT. Kyriakou Y; Meyer E; Prell D; Kachelriess M Med Phys; 2010 Oct; 37(10):5179-87. PubMed ID: 21089751 [TBL] [Abstract][Full Text] [Related]
8. Segmentation-free empirical beam hardening correction for CT. Schüller S; Sawall S; Stannigel K; Hülsbusch M; Ulrici J; Hell E; Kachelrieß M Med Phys; 2015 Feb; 42(2):794-803. PubMed ID: 25652493 [TBL] [Abstract][Full Text] [Related]
9. Exact dual energy material decomposition from inconsistent rays (MDIR). Maass C; Meyer E; Kachelriess M Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706 [TBL] [Abstract][Full Text] [Related]
10. Computed tomography-based attenuation correction in neurological positron emission tomography: evaluation of the effect of the X-ray tube voltage on quantitative analysis. Reza Ay M; Zaidi H Nucl Med Commun; 2006 Apr; 27(4):339-46. PubMed ID: 16531919 [TBL] [Abstract][Full Text] [Related]
11. Empirical dual energy calibration (EDEC) for cone-beam computed tomography. Stenner P; Berkus T; Kachelriess M Med Phys; 2007 Sep; 34(9):3630-41. PubMed ID: 17926967 [TBL] [Abstract][Full Text] [Related]
12. Denoising of polychromatic CT images based on their own noise properties. Kim JH; Chang Y; Ra JB Med Phys; 2016 May; 43(5):2251. PubMed ID: 27147337 [TBL] [Abstract][Full Text] [Related]
13. Image-based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain. Maass C; Baer M; Kachelriess M Med Phys; 2009 Aug; 36(8):3818-29. PubMed ID: 19746815 [TBL] [Abstract][Full Text] [Related]
14. A practical material decomposition method for x-ray dual spectral computed tomography. Hu J; Zhao X J Xray Sci Technol; 2016 Mar; 24(3):407-25. PubMed ID: 27257878 [TBL] [Abstract][Full Text] [Related]
15. Dual energy exposure control (DEEC) for computed tomography: algorithm and simulation study. Stenner P; Kachelriess M Med Phys; 2008 Nov; 35(11):5054-60. PubMed ID: 19070239 [TBL] [Abstract][Full Text] [Related]
16. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part II. Implementation on abdomen and thorax phantoms using cross sectional CT images and scanned projection radiograph images. Wang J; Christner JA; Duan X; Leng S; Yu L; McCollough CH Med Phys; 2012 Nov; 39(11):6772-8. PubMed ID: 23127071 [TBL] [Abstract][Full Text] [Related]
17. Empirical beam hardening and ring artifact correction for x-ray grating interferometry (EBHC-GI). Nelson BJ; Leng S; Shanblatt ER; McCollough CH; Koenig T Med Phys; 2021 Mar; 48(3):1327-1340. PubMed ID: 33338261 [TBL] [Abstract][Full Text] [Related]
18. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Krauss B; Grant KL; Schmidt BT; Flohr TG Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305 [TBL] [Abstract][Full Text] [Related]
19. An Investigation of Calibration Phantoms for CT Scanners with Tube Voltage Modulation. Zou J; Hu X; Lv H; Hu X Int J Biomed Imaging; 2013; 2013():563571. PubMed ID: 24454334 [TBL] [Abstract][Full Text] [Related]
20. Iterative correction of beam hardening artifacts in CT. Van Gompel G; Van Slambrouck K; Defrise M; Batenburg KJ; de Mey J; Sijbers J; Nuyts J Med Phys; 2011 Jul; 38 Suppl 1():S36. PubMed ID: 21978116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]