BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20601773)

  • 1. Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images.
    Shih TC; Chen JH; Liu D; Nie K; Sun L; Lin M; Chang D; Nalcioglu O; Su MY
    Phys Med Biol; 2010 Jul; 55(14):4153-68. PubMed ID: 20601773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation.
    Sturgeon GM; Kiarashi N; Lo JY; Samei E; Segars WP
    Med Phys; 2016 May; 43(5):2207. PubMed ID: 27147333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of mammographic breast compression in 3D MR images using ICP-based B-spline deformation for multimodality breast cancer diagnosis.
    Krüger J; Ehrhardt J; Bischof A; Handels H
    Int J Comput Assist Radiol Surg; 2014 May; 9(3):367-77. PubMed ID: 24430800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of the mechanical parameters used for finite element compression of a high-resolution 3D breast phantom.
    Hsu CM; Palmeri ML; Segars WP; Veress AI; Dobbins JT
    Med Phys; 2011 Oct; 38(10):5756-70. PubMed ID: 21992390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A complete software application for automatic registration of x-ray mammography and magnetic resonance images.
    Solves-Llorens JA; Rupérez MJ; Monserrat C; Feliu E; García M; Lloret M
    Med Phys; 2014 Aug; 41(8):081903. PubMed ID: 25086534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards an in-plane methodology to track breast lesions using mammograms and patient-specific finite-element simulations.
    Lapuebla-Ferri A; Cegoñino-Banzo J; Jiménez-Mocholí AJ; Del Palomar AP
    Phys Med Biol; 2017 Nov; 62(22):8720-8738. PubMed ID: 29091591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting tumor location by modeling the deformation of the breast.
    Pathmanathan P; Gavaghan DJ; Whiteley JP; Chapman SJ; Brady JM
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2471-80. PubMed ID: 18838373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breast lesion co-localisation between X-ray and MR images using finite element modelling.
    Lee AW; Rajagopal V; Babarenda Gamage TP; Doyle AJ; Nielsen PM; Nash MP
    Med Image Anal; 2013 Dec; 17(8):1256-64. PubMed ID: 23860392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling mammographic compression of the breast.
    Chung JH; Rajagopal V; Nielsen PM; Nash MP
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):758-65. PubMed ID: 18982673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a biomechanical breast model to simulate and investigate breast compression and its effects in mammography and tomosynthesis.
    Hertel M; Makvandi R; Kappler S; Nanke R; Bildhauer P; Saalfeld S; Radicke M; Juhre D; Rose G
    Phys Med Biol; 2023 Apr; 68(8):. PubMed ID: 36893466
    [No Abstract]   [Full Text] [Related]  

  • 11. Validation of a method for measuring the volumetric breast density from digital mammograms.
    Alonzo-Proulx O; Packard N; Boone JM; Al-Mayah A; Brock KK; Shen SZ; Yaffe MJ
    Phys Med Biol; 2010 Jun; 55(11):3027-44. PubMed ID: 20463377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images.
    Wei J; Chan HP; Helvie MA; Roubidoux MA; Sahiner B; Hadjiiski LM; Zhou C; Paquerault S; Chenevert T; Goodsitt MM
    Med Phys; 2004 Apr; 31(4):933-42. PubMed ID: 15125012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical 3-D finite element modeling of the human breast using MRI data.
    Samani A; Bishop J; Yaffe MJ; Plewes DB
    IEEE Trans Med Imaging; 2001 Apr; 20(4):271-9. PubMed ID: 11370894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibroglandular tissue distribution in the breast during mammography and tomosynthesis based on breast CT data: A patient-based characterization of the breast parenchyma.
    Fedon C; Caballo M; García E; Diaz O; Boone JM; Dance DR; Sechopoulos I
    Med Phys; 2021 Mar; 48(3):1436-1447. PubMed ID: 33452822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation.
    Bakic PR; Albert M; Brzakovic D; Maidment AD
    Med Phys; 2002 Sep; 29(9):2131-9. PubMed ID: 12349935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast compression and radiation dose in two different mammographic oblique projections: 45 and 60 degrees.
    Brnić Z; Hebrang A
    Eur J Radiol; 2001 Oct; 40(1):10-5. PubMed ID: 11673002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of the biomechanical mammographic deformation of the breast using machine learning models.
    Said S; Yang Z; Clauser P; Ruiter NV; Baltzer PAT; Hopp T
    Clin Biomech (Bristol, Avon); 2023 Dec; 110():106117. PubMed ID: 37826970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging.
    Lee NA; Rusinek H; Weinreb J; Chandra R; Toth H; Singer C; Newstead G
    AJR Am J Roentgenol; 1997 Feb; 168(2):501-6. PubMed ID: 9016235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic image matching for breast cancer diagnostics by a 3D deformation model of the mamma.
    Ruiter NV; Müller TO; Stotzka R; Gemmeke H; Reichenbach JR; Kaiser WA
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():644-7. PubMed ID: 12465263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture.
    Bakic PR; Albert M; Brzakovic D; Maidment AD
    Med Phys; 2002 Sep; 29(9):2140-51. PubMed ID: 12349936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.