These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 20601839)
1. Development of cell-processing systems for human stem cells (neural stem cells, mesenchymal stem cells, and iPS cells) for regenerative medicine. Kanemura Y Keio J Med; 2010; 59(2):35-45. PubMed ID: 20601839 [TBL] [Abstract][Full Text] [Related]
2. A method for efficiently generating neurospheres from human-induced pluripotent stem cells using microsphere arrays. Shofuda T; Fukusumi H; Kanematsu D; Yamamoto A; Yamasaki M; Arita N; Kanemura Y Neuroreport; 2013 Jan; 24(2):84-90. PubMed ID: 23238165 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of in vitro proliferative activity of human fetal neural stem/progenitor cells using indirect measurements of viable cells based on cellular metabolic activity. Kanemura Y; Mori H; Kobayashi S; Islam O; Kodama E; Yamamoto A; Nakanishi Y; Arita N; Yamasaki M; Okano H; Hara M; Miyake J J Neurosci Res; 2002 Sep; 69(6):869-79. PubMed ID: 12205680 [TBL] [Abstract][Full Text] [Related]
4. In vitro screening of exogenous factors for human neural stem/progenitor cell proliferation using measurement of total ATP content in viable cells. Kanemura Y; Mori H; Nakagawa A; Islam MO; Kodama E; Yamamoto A; Shofuda T; Kobayashi S; Miyake J; Yamazaki T; Hirano S; Yamasaki M; Okano H Cell Transplant; 2005; 14(9):673-82. PubMed ID: 16405078 [TBL] [Abstract][Full Text] [Related]
5. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype. Laundos TL; Silva J; Assunção M; Quelhas P; Monteiro C; Oliveira C; Oliveira MJ; Pêgo AP; Amaral IF J Tissue Eng Regen Med; 2017 Aug; 11(8):2227-2240. PubMed ID: 26880706 [TBL] [Abstract][Full Text] [Related]
6. GMP-compatible and xeno-free cultivation of mesenchymal progenitors derived from human-induced pluripotent stem cells. McGrath M; Tam E; Sladkova M; AlManaie A; Zimmer M; de Peppo GM Stem Cell Res Ther; 2019 Jan; 10(1):11. PubMed ID: 30635059 [TBL] [Abstract][Full Text] [Related]
7. ABCB1 is predominantly expressed in human fetal neural stem/progenitor cells at an early development stage. Yamamoto A; Shofuda T; Islam MO; Nakamura Y; Yamasaki M; Okano H; Kanemura Y J Neurosci Res; 2009 Sep; 87(12):2615-23. PubMed ID: 19384922 [TBL] [Abstract][Full Text] [Related]
8. Efficient neuronal differentiation of mouse ES and iPS cells using a rotary cell culture protocol. Mohamad O; Yu SP; Chen D; Ogle M; Song M; Wei L Differentiation; 2013; 86(4-5):149-58. PubMed ID: 24480155 [TBL] [Abstract][Full Text] [Related]
9. Xeno- and transgene-free reprogramming of mesenchymal stem cells toward the cells expressing neural markers using exosome treatments. Valerio LSA; Sugaya K PLoS One; 2020; 15(10):e0240469. PubMed ID: 33048978 [TBL] [Abstract][Full Text] [Related]
10. Human Decidua-Derived Mesenchymal Cells Are a Promising Source for the Generation and Cell Banking of Human Induced Pluripotent Stem Cells. Shofuda T; Kanematsu D; Fukusumi H; Yamamoto A; Bamba Y; Yoshitatsu S; Suemizu H; Nakamura M; Sugimoto Y; Furue MK; Kohara A; Akamatsu W; Okada Y; Okano H; Yamasaki M; Kanemura Y Cell Med; 2013 Mar; 4(3):125-47. PubMed ID: 26858858 [TBL] [Abstract][Full Text] [Related]
11. Production of Mesenchymal Stem Cells Through Stem Cell Reprogramming. Abdal Dayem A; Lee SB; Kim K; Lim KM; Jeon TI; Seok J; Cho AS Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31003536 [TBL] [Abstract][Full Text] [Related]
12. Isolation and cellular properties of mesenchymal cells derived from the decidua of human term placenta. Kanematsu D; Shofuda T; Yamamoto A; Ban C; Ueda T; Yamasaki M; Kanemura Y Differentiation; 2011 Sep; 82(2):77-88. PubMed ID: 21684674 [TBL] [Abstract][Full Text] [Related]
13. Therapeutic Application of Placental Mesenchymal Stem Cells Reprogrammed Neurospheres in Spinal Cord Injury of SCID. Sabapathy V; Herbert FJ; Kumar S Methods Mol Biol; 2017; 1553():91-113. PubMed ID: 28229410 [TBL] [Abstract][Full Text] [Related]
14. Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres. Begum AN; Guoynes C; Cho J; Hao J; Lutfy K; Hong Y Stem Cell Res; 2015 Nov; 15(3):731-741. PubMed ID: 26613348 [TBL] [Abstract][Full Text] [Related]
15. Generation and In Vitro Expansion of Hepatic Progenitor Cells from Human iPS Cells. Yanagida A; Nakauchi H; Kamiya A Methods Mol Biol; 2016; 1357():295-310. PubMed ID: 25697415 [TBL] [Abstract][Full Text] [Related]
16. Production of Retinal Cells from Confluent Human iPS Cells. Reichman S; Goureau O Methods Mol Biol; 2016; 1357():339-51. PubMed ID: 25417064 [TBL] [Abstract][Full Text] [Related]
17. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells. Yamashita T; Miyamoto Y; Bando Y; Ono T; Kobayashi S; Doi A; Araki T; Kato Y; Shirakawa T; Suzuki Y; Yamauchi J; Yoshida S; Sato N PLoS One; 2017; 12(2):e0171947. PubMed ID: 28192470 [TBL] [Abstract][Full Text] [Related]
19. Small-scale screening of anticancer drugs acting specifically on neural stem/progenitor cells derived from human-induced pluripotent stem cells using a time-course cytotoxicity test. Fukusumi H; Handa Y; Shofuda T; Kanemura Y PeerJ; 2018; 6():e4187. PubMed ID: 29312819 [TBL] [Abstract][Full Text] [Related]
20. Prospects of induced pluripotent stem cell technology in regenerative medicine. Zhang F; Citra F; Wang DA Tissue Eng Part B Rev; 2011 Apr; 17(2):115-24. PubMed ID: 21210760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]