BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20602002)

  • 1. High-content analysis in monastrol suppressor screens. A neural network-based classification approach.
    Zhang Z; Ge Y; Zhang D; Zhou X
    Methods Inf Med; 2011; 50(3):265-72. PubMed ID: 20602002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computerized cellular imaging system for high content analysis in Monastrol suppressor screens.
    Zhou X; Cao X; Perlman Z; Wong ST
    J Biomed Inform; 2006 Apr; 39(2):115-25. PubMed ID: 16011909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic brain MR image denoising based on texture feature-based artificial neural networks.
    Chang YN; Chang HH
    Biomed Mater Eng; 2015; 26 Suppl 1():S1275-82. PubMed ID: 26405887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated classification of mitotic phenotypes of human cells using fluorescent proteins.
    Harder N; Eils R; Rohr K
    Methods Cell Biol; 2008; 85():539-54. PubMed ID: 18155478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotype recognition with combined features and random subspace classifier ensemble.
    Zhang B; Pham TD
    BMC Bioinformatics; 2011 Apr; 12():128. PubMed ID: 21529372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Identification of Human Erythrocytes in Microscopic Fecal Specimens.
    Liu L; Lei H; Zhang J; Yuan Y; Zhang Z; Liu J; Xie Y; Ni G; Liu Y
    J Med Syst; 2015 Nov; 39(11):146. PubMed ID: 26349804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature extraction and pattern classification of colorectal polyps in colonoscopic imaging.
    Fu JJ; Yu YW; Lin HM; Chai JW; Chen CC
    Comput Med Imaging Graph; 2014 Jun; 38(4):267-75. PubMed ID: 24495469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic detection and classification of leukocytes using convolutional neural networks.
    Zhao J; Zhang M; Zhou Z; Chu J; Cao F
    Med Biol Eng Comput; 2017 Aug; 55(8):1287-1301. PubMed ID: 27822698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature Selection and Classification of Electroencephalographic Signals: An Artificial Neural Network and Genetic Algorithm Based Approach.
    Erguzel TT; Ozekes S; Tan O; Gultekin S
    Clin EEG Neurosci; 2015 Oct; 46(4):321-6. PubMed ID: 24733718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale tracking and classification for automatic analysis of cell migration and proliferation, and experimental optimization of high-throughput screens of neuroblastoma cells.
    Harder N; Batra R; Diessl N; Gogolin S; Eils R; Westermann F; König R; Rohr K
    Cytometry A; 2015 Jun; 87(6):524-40. PubMed ID: 25630981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Segmentation of whole body bone SPECT image based on BP neural network].
    Zhu C; Tian L; Chen P; He Y; Wang L; Ye G; Mao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1050-3. PubMed ID: 18027694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skin segmentation using color pixel classification: analysis and comparison.
    Phung SL; Bouzerdoum A; Chai D
    IEEE Trans Pattern Anal Mach Intell; 2005 Jan; 27(1):148-54. PubMed ID: 15628277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain MR images segmentation using statistical ratio: mapping between watershed and competitive Hopfield clustering network algorithms.
    Kuo WF; Lin CY; Sun YN
    Comput Methods Programs Biomed; 2008 Sep; 91(3):191-8. PubMed ID: 18555554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reliable method for cell phenotype image classification.
    Nanni L; Lumini A
    Artif Intell Med; 2008 Jun; 43(2):87-97. PubMed ID: 18440791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-assisted interpretation of planar whole-body bone scans.
    Sadik M; Hamadeh I; Nordblom P; Suurkula M; Höglund P; Ohlsson M; Edenbrandt L
    J Nucl Med; 2008 Dec; 49(12):1958-65. PubMed ID: 18997038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature extraction with deep neural networks by a generalized discriminant analysis.
    Stuhlsatz A; Lippel J; Zielke T
    IEEE Trans Neural Netw Learn Syst; 2012 Apr; 23(4):596-608. PubMed ID: 24805043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new automatic parameter setting method of a simplified PCNN for image segmentation.
    Chen Y; Park SK; Ma Y; Ala R
    IEEE Trans Neural Netw; 2011 Jun; 22(6):880-92. PubMed ID: 21550882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wavelet-based optimal texture feature set for classification of brain tumours.
    Sasikala M; Kumaravel N
    J Med Eng Technol; 2008; 32(3):198-205. PubMed ID: 18432467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell segmentation in phase contrast microscopy images via semi-supervised classification over optics-related features.
    Su H; Yin Z; Huh S; Kanade T
    Med Image Anal; 2013 Oct; 17(7):746-65. PubMed ID: 23725638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping.
    Wu Y; Yang R; Jia S; Li Z; Zhou Z; Lou T
    Biomed Mater Eng; 2014; 24(6):3379-88. PubMed ID: 25227048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.