These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 20602230)
21. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. Poller JM; Zaloga J; Schreiber E; Unterweger H; Janko C; Radon P; Eberbeck D; Trahms L; Alexiou C; Friedrich RP Int J Nanomedicine; 2017; 12():3207-3220. PubMed ID: 28458541 [TBL] [Abstract][Full Text] [Related]
22. One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement. Dai L; Liu Y; Wang Z; Guo F; Shi D; Zhang B Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():161-7. PubMed ID: 24907749 [TBL] [Abstract][Full Text] [Related]
24. Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles. Zaloga J; Janko C; Agarwal R; Nowak J; Müller R; Boccaccini AR; Lee G; Odenbach S; Lyer S; Alexiou C Int J Mol Sci; 2015 Apr; 16(5):9368-84. PubMed ID: 25918940 [TBL] [Abstract][Full Text] [Related]
25. Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study. Singh H; Du J; Singh P; Mavlonov GT; Yi TH J Photochem Photobiol B; 2018 Aug; 185():100-110. PubMed ID: 29885646 [TBL] [Abstract][Full Text] [Related]
27. One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains. Wang J; Zhang B; Wang L; Wang M; Gao F Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():416-23. PubMed ID: 25579942 [TBL] [Abstract][Full Text] [Related]
28. [Preparation and characterization of citric acid-modified superparamagnetic iron oxide nanoparticles]. Wang H; Qin XY; Li ZY; Zheng ZZ; Fan TY Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):340-346. PubMed ID: 29643537 [TBL] [Abstract][Full Text] [Related]
29. Nonpolymeric surface-coated iron oxide nanoparticles for in vivo molecular imaging: biodegradation, biocompatibility, and multiplatform. Lee CM; Cheong SJ; Kim EM; Lim ST; Jeong YY; Sohn MH; Jeong HJ J Nucl Med; 2013 Nov; 54(11):1974-80. PubMed ID: 24050935 [TBL] [Abstract][Full Text] [Related]
30. A reliable protocol for colorimetric determination of iron oxide nanoparticle uptake by cells. Deda DK; Cardoso RM; Uchiyama MK; Pavani C; Toma SH; Baptista MS; Araki K Anal Bioanal Chem; 2017 Nov; 409(28):6663-6675. PubMed ID: 28918472 [TBL] [Abstract][Full Text] [Related]
32. (Carboxymethyl)chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells. Shi Z; Neoh KG; Kang ET; Shuter B; Wang SC; Poh C; Wang W ACS Appl Mater Interfaces; 2009 Feb; 1(2):328-35. PubMed ID: 20353220 [TBL] [Abstract][Full Text] [Related]
33. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Kandasamy G; Maity D Int J Pharm; 2015 Dec; 496(2):191-218. PubMed ID: 26520409 [TBL] [Abstract][Full Text] [Related]
34. External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. Shanehsazzadeh S; Lahooti A; Hajipour MJ; Ghavami M; Azhdarzadeh M Colloids Surf B Biointerfaces; 2015 Dec; 136():1107-12. PubMed ID: 26613856 [TBL] [Abstract][Full Text] [Related]
35. The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell. Gu J; Xu H; Han Y; Dai W; Hao W; Wang C; Gu N; Xu H; Cao J Sci China Life Sci; 2011 Sep; 54(9):793-805. PubMed ID: 21922429 [TBL] [Abstract][Full Text] [Related]
36. Multifunctional polymeric nanoparticles doubly loaded with SPION and ceftiofur retain their physical and biological properties. Solar P; González G; Vilos C; Herrera N; Juica N; Moreno M; Simon F; Velásquez L J Nanobiotechnology; 2015 Feb; 13():14. PubMed ID: 25886018 [TBL] [Abstract][Full Text] [Related]
37. Effect of Varying Magnetic Fields on Targeted Gene Delivery of Nucleic Acid-Based Molecules. Oral O; Cıkım T; Zuvin M; Unal O; Yagci-Acar H; Gozuacik D; Koşar A Ann Biomed Eng; 2015 Nov; 43(11):2816-26. PubMed ID: 25963582 [TBL] [Abstract][Full Text] [Related]
38. Increased endocytosis rate and enhanced lysosomal pathway of silica-coated superparamagnetic nanoparticles into M-HeLa cells compared with cultured primary motor neurons. Sibgatullina G; Ramazanova I; Salnikov V; Stepanov A; Voloshina A; Sapunova A; Mustafina A; Petrov K; Samigullin D Histochem Cell Biol; 2024 Jun; 161(6):507-519. PubMed ID: 38597938 [TBL] [Abstract][Full Text] [Related]
39. Cellular interactions of functionalized superparamagnetic iron oxide nanoparticles on oligodendrocytes without detrimental side effects: Cell death induction, oxidative stress and inflammation. Sruthi S; Maurizi L; Nury T; Sallem F; Boudon J; Riedinger JM; Millot N; Bouyer F; Lizard G Colloids Surf B Biointerfaces; 2018 Oct; 170():454-462. PubMed ID: 29958160 [TBL] [Abstract][Full Text] [Related]
40. Biodistribution and Clearance of Stable Superparamagnetic Maghemite Iron Oxide Nanoparticles in Mice Following Intraperitoneal Administration. Pham BTT; Colvin EK; Pham NTH; Kim BJ; Fuller ES; Moon EA; Barbey R; Yuen S; Rickman BH; Bryce NS; Bickley S; Tanudji M; Jones SK; Howell VM; Hawkett BS Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29320407 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]