BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20602447)

  • 1. Plasmids for in vivo construction of integrative Candida albicans vectors in Saccharomyces cerevisiae.
    Vieira N; Pereira F; Casal M; Brown AJ; Paiva S; Johansson B
    Yeast; 2010 Nov; 27(11):933-9. PubMed ID: 20602447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shuttle vectors for facile gap repair cloning and integration into a neutral locus in Candida albicans.
    Gerami-Nejad M; Zacchi LF; McClellan M; Matter K; Berman J
    Microbiology (Reading); 2013 Mar; 159(Pt 3):565-579. PubMed ID: 23306673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and expression of Candida albicans ADE2 and proteinase genes on a replicative plasmid in C. albicans and in Saccharomyces cerevisiae.
    Cannon RD; Jenkinson HF; Shepherd MG
    Mol Gen Genet; 1992 Nov; 235(2-3):453-7. PubMed ID: 1465116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reorganized Candida albicans DNA sequence promoting homologous non-integrative genetic transformation.
    Herreros E; García-Sáez MI; Nombela C; Sánchez M
    Mol Microbiol; 1992 Dec; 6(23):3567-74. PubMed ID: 1474898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of genes from Candida albicans by complementation in Saccharomyces cerevisiae.
    Rosenbluh A; Mevarech M; Koltin Y; Gorman JA
    Mol Gen Genet; 1985; 200(3):500-2. PubMed ID: 3900642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a large plasmid lacking linearizing single restriction sites by simultaneous in vivo recombination and plasmid shuffling in yeast.
    Miletti KE; Leibowitz MJ
    Yeast; 2000 Dec; 16(16):1527-34. PubMed ID: 11113975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of Candida albicans secretory aspartyl proteinase 2 and its expression in Saccharomyces cerevisiae do not augment virulence in mice.
    Dubois N; Colina AR; Aumont F; Belhumeur P; de Repentigny L
    Microbiology (Reading); 1998 Aug; 144 ( Pt 8)():2299-2310. PubMed ID: 9720053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene isolation by complementation in Candida albicans and applications to physical and genetic mapping.
    Goshorn AK; Grindle SM; Scherer S
    Infect Immun; 1992 Mar; 60(3):876-84. PubMed ID: 1541560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular genetics of Candida albicans.
    Kurtz MB; Kirsch DR; Kelly R
    Microbiol Sci; 1988 Feb; 5(2):58-63. PubMed ID: 3079219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A G-protein alpha subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a1-alpha 2 repressor.
    Sadhu C; Hoekstra D; McEachern MJ; Reed SI; Hicks JB
    Mol Cell Biol; 1992 May; 12(5):1977-85. PubMed ID: 1569935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of a Candida albicans DNA sequence conferring adhesion and aggregation on Saccharomyces cerevisiae.
    Barki M; Koltin Y; Yanko M; Tamarkin A; Rosenberg M
    J Bacteriol; 1993 Sep; 175(17):5683-9. PubMed ID: 8366054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a new yeast cloning vector containing autonomous replication sequences from Candida utilis.
    Hsu WH; Magee PT; Magee BB; Reddy CA
    J Bacteriol; 1983 Jun; 154(3):1033-9. PubMed ID: 6304003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of protein function in clinical C. albicans isolates.
    Gerami-Nejad M; Forche A; McClellan M; Berman J
    Yeast; 2012 Aug; 29(8):303-9. PubMed ID: 22777821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative transformation of Candida albicans, using a cloned Candida ADE2 gene.
    Kurtz MB; Cortelyou MW; Kirsch DR
    Mol Cell Biol; 1986 Jan; 6(1):142-9. PubMed ID: 3023819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations.
    Gillum AM; Tsay EY; Kirsch DR
    Mol Gen Genet; 1984; 198(2):179-82. PubMed ID: 6394964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae.
    Mans R; van Rossum HM; Wijsman M; Backx A; Kuijpers NG; van den Broek M; Daran-Lapujade P; Pronk JT; van Maris AJ; Daran JM
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25743786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae.
    Eckert-Boulet N; Pedersen ML; Krogh BO; Lisby M
    Yeast; 2012 Aug; 29(8):323-34. PubMed ID: 22806834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A vector set for systematic metabolic engineering in Saccharomyces cerevisiae.
    Fang F; Salmon K; Shen MW; Aeling KA; Ito E; Irwin B; Tran UP; Hatfield GW; Da Silva NA; Sandmeyer S
    Yeast; 2011 Feb; 28(2):123-36. PubMed ID: 20936606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of Candida albicans Tet-on tagging vectors with a Ura-blaster cassette.
    Lai WC; Tseng TL; Jian T; Lee TL; Cheng CW; Shieh JC
    Yeast; 2011 Mar; 28(3):253-63. PubMed ID: 21360736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of a heterologous leucyl-tRNA (anticodon CAG) in the pathogen Candida albicans: in vivo evidence for non-standard decoding of CUG codons.
    Leuker CE; Ernst JF
    Mol Gen Genet; 1994 Oct; 245(2):212-7. PubMed ID: 7816029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.