BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20602472)

  • 1. Vimentin contributes to changes in chondrocyte stiffness in osteoarthritis.
    Haudenschild DR; Chen J; Pang N; Steklov N; Grogan SP; Lotz MK; D'Lima DD
    J Orthop Res; 2011 Jan; 29(1):20-5. PubMed ID: 20602472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes.
    Trickey WR; Vail TP; Guilak F
    J Orthop Res; 2004 Jan; 22(1):131-9. PubMed ID: 14656671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of vimentin disruption on the mechanoresponses of articular chondrocyte.
    Chen C; Yin L; Song X; Yang H; Ren X; Gong X; Wang F; Yang L
    Biochem Biophys Res Commun; 2016 Jan; 469(1):132-137. PubMed ID: 26616052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis.
    Blain EJ; Gilbert SJ; Hayes AJ; Duance VC
    Matrix Biol; 2006 Sep; 25(7):398-408. PubMed ID: 16876394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of chondrocytes in high-stiffness agarose microenvironments for in vitro modeling of osteoarthritis mechanotransduction.
    Jutila AA; Zignego DL; Schell WJ; June RK
    Ann Biomed Eng; 2015 May; 43(5):1132-44. PubMed ID: 25395215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging-related differences in chondrocyte viscoelastic properties.
    Steklov N; Srivastava A; Sung KL; Chen PC; Lotz MK; D'Lima DD
    Mol Cell Biomech; 2009 Jun; 6(2):113-9. PubMed ID: 19496259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes.
    Zignego DL; Jutila AA; Gelbke MK; Gannon DM; June RK
    J Biomech; 2014 Jun; 47(9):2143-8. PubMed ID: 24275437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoskeleton disruption in chondrocytes from a rat osteoarthrosic (OA) -induced model: its potential role in OA pathogenesis.
    Capín-Gutiérrez N; Talamás-Rohana P; González-Robles A; Lavalle-Montalvo C; Kourí JB
    Histol Histopathol; 2004 Oct; 19(4):1125-32. PubMed ID: 15375755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleukin-1β and tumor necrosis factor-α increase stiffness and impair contractile function of articular chondrocytes.
    Chen C; Xie J; Rajappa R; Deng L; Fredberg J; Yang L
    Acta Biochim Biophys Sin (Shanghai); 2015 Feb; 47(2):121-9. PubMed ID: 25520178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture.
    Durrant LA; Archer CW; Benjamin M; Ralphs JR
    J Anat; 1999 Apr; 194 ( Pt 3)(Pt 3):343-53. PubMed ID: 10386772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal analysis of cytoskeletal organisation within isolated chondrocyte sub-populations cultured in agarose.
    Idowu BD; Knight MM; Bader DL; Lee DA
    Histochem J; 2000 Mar; 32(3):165-74. PubMed ID: 10841311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in the Young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage.
    Jones WR; Ting-Beall HP; Lee GM; Kelley SS; Hochmuth RM; Guilak F
    J Biomech; 1999 Feb; 32(2):119-27. PubMed ID: 10052916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium/calmodulin-dependent protein kinase II in human articular chondrocytes.
    Shimazaki A; Wright MO; Elliot K; Salter DM; Millward-Sadler SJ
    Biorheology; 2006; 43(3,4):223-33. PubMed ID: 16912396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increase of cell surface vimentin is associated with vimentin network disruption and subsequent stress-induced premature senescence in human chondrocytes.
    Riegger J; Brenner RE
    Elife; 2023 Oct; 12():. PubMed ID: 37855367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of continuous high hydrostatic pressure on the morphology and cytoskeleton of normal and osteoarthritic human chondrocytes cultivated in alginate gels.
    Fioravanti A; Benetti D; Coppola G; Collodel G
    Clin Exp Rheumatol; 2005; 23(6):847-53. PubMed ID: 16396703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis.
    Lambrecht S; Verbruggen G; Verdonk PC; Elewaut D; Deforce D
    Osteoarthritis Cartilage; 2008 Feb; 16(2):163-73. PubMed ID: 17643325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair.
    Martin JA; Buckwalter JA
    J Bone Joint Surg Am; 2003; 85-A Suppl 2():106-10. PubMed ID: 12721352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of matrix stiffness on biomechanical properties of chondrocytes.
    Zhang Q; Yu Y; Zhao H
    Acta Biochim Biophys Sin (Shanghai); 2016 Oct; 48(10):958-965. PubMed ID: 27590061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels.
    Lee DA; Knight MM; Bolton JF; Idowu BD; Kayser MV; Bader DL
    J Biomech; 2000 Jan; 33(1):81-95. PubMed ID: 10609521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.