These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 2060254)
1. Caffeine as a metabolic probe: validation of its use for acetylator phenotyping. Tang BK; Kadar D; Qian L; Iriah J; Yip J; Kalow W Clin Pharmacol Ther; 1991 Jun; 49(6):648-57. PubMed ID: 2060254 [TBL] [Abstract][Full Text] [Related]
2. Phenotyping of N-acetyltransferase type 2 by caffeine from uncontrolled dietary exposure. Jetter A; Kinzig-Schippers M; Illauer M; Hermann R; Erb K; Borlak J; Wolf H; Smith G; Cascorbi I; Sörgel F; Fuhr U Eur J Clin Pharmacol; 2004 Mar; 60(1):17-21. PubMed ID: 14747882 [TBL] [Abstract][Full Text] [Related]
3. Phenotyping of N-acetyltransferase type 2 and xanthine oxidase with caffeine: when should urine samples be collected? Jetter A; Kinzig M; Rodamer M; Tomalik-Scharte D; Sörgel F; Fuhr U Eur J Clin Pharmacol; 2009 Apr; 65(4):411-7. PubMed ID: 19082994 [TBL] [Abstract][Full Text] [Related]
4. NAT2 and CYP1A2 phenotyping with caffeine: head-to-head comparison of AFMU vs. AAMU in the urine metabolite ratios. Nyéki A; Buclin T; Biollaz J; Decosterd LA Br J Clin Pharmacol; 2003 Jan; 55(1):62-7. PubMed ID: 12534641 [TBL] [Abstract][Full Text] [Related]
6. Segregation analyses of four urinary caffeine metabolite ratios implicated in the determination of human acetylation phenotypes. Vincent-Viry M; Pontes ZB; Gueguen R; Galteau MM; Siest G Genet Epidemiol; 1994; 11(2):115-29. PubMed ID: 8013893 [TBL] [Abstract][Full Text] [Related]
7. Acetylator phenotyping via analysis of four caffeine metabolites in human urine by micellar electrokinetic capillary chromatography with multiwavelength detection. Guo R; Thormann W Electrophoresis; 1993; 14(5-6):547-53. PubMed ID: 8354241 [TBL] [Abstract][Full Text] [Related]
8. [Determination of caffeine metabolite for the evaluation of N-acetyltransferase, CYP1A2 and xanthine oxidase activities]. Lu JF; Yi T; Cao XM; Zhuo HT; Ling SS Yao Xue Xue Bao; 1997 Nov; 32(11):813-8. PubMed ID: 11596199 [TBL] [Abstract][Full Text] [Related]
9. A simple test for acetylator phenotype using caffeine. Grant DM; Tang BK; Kalow W Br J Clin Pharmacol; 1984 Apr; 17(4):459-64. PubMed ID: 6721992 [TBL] [Abstract][Full Text] [Related]
10. A simplified and rapid test for acetylator phenotyping by use of the peak height ratio of two urinary caffeine metabolites. el-Yazigi A; Chaleby K; Martin CR Clin Chem; 1989 May; 35(5):848-51. PubMed ID: 2566399 [TBL] [Abstract][Full Text] [Related]
11. In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios. Begas E; Kouvaras E; Tsakalof A; Papakosta S; Asprodini EK Biomed Chromatogr; 2007 Feb; 21(2):190-200. PubMed ID: 17221922 [TBL] [Abstract][Full Text] [Related]
12. Acetylator phenotyping in patients with malignant lymphomas, using caffeine as the metabolic probe. William BM; Abdel-tawab AM; Hassan EA; Mohamed OF Pol J Pharmacol; 2004; 56(4):445-9. PubMed ID: 15520499 [TBL] [Abstract][Full Text] [Related]
13. N-acetylator variability in Down's syndrome: characterization with caffeine. Morris ME; Griener JC; Msall ME Clin Pharmacol Ther; 1989 Sep; 46(3):359-66. PubMed ID: 2528436 [TBL] [Abstract][Full Text] [Related]
14. Extractionless method for the simultaneous high-performance liquid chromatographic determination of urinary caffeine metabolites for N-acetyltransferase 2, cytochrome P450 1A2 and xanthine oxidase activity assessment. Nyéki A; Biollaz J; Kesselring UW; Décosterd LA J Chromatogr B Biomed Sci Appl; 2001 May; 755(1-2):73-84. PubMed ID: 11393735 [TBL] [Abstract][Full Text] [Related]
15. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Tsutsumi K; Kotegawa T; Matsuki S; Tanaka Y; Ishii Y; Kodama Y; Kuranari M; Miyakawa I; Nakano S Clin Pharmacol Ther; 2001 Aug; 70(2):121-5. PubMed ID: 11503005 [TBL] [Abstract][Full Text] [Related]
16. [The acetylator polymorphism in a Khmer population: clinical consequences]. Bechtel YC; Bechtel PR; Lelouët H; Choisy H; Dy NR Therapie; 2001; 56(4):409-13. PubMed ID: 11677864 [TBL] [Abstract][Full Text] [Related]
17. Determination of N-acetylation phenotyping in a Greek population using caffeine as a metabolic probe. Asprodini EK; Zifa E; Papageorgiou I; Benakis A Eur J Drug Metab Pharmacokinet; 1998; 23(4):501-6. PubMed ID: 10323334 [TBL] [Abstract][Full Text] [Related]
18. Acetylator phenotyping: the urinary caffeine metabolite ratio in slow acetylators correlates with a marker of systemic NAT1 activity. Cribb AE; Isbrucker R; Levatte T; Tsui B; Gillespie CT; Renton KW Pharmacogenetics; 1994 Jun; 4(3):166-70. PubMed ID: 7920698 [TBL] [Abstract][Full Text] [Related]
19. Validity of an ELISA for N-acetyltransferase-2 (NAT2) phenotyping. Wong P; Banerjee K; Massengill J; Nowell S; Lang N; Leyland-Jones B J Immunol Methods; 2001 May; 251(1-2):1-9. PubMed ID: 11292476 [TBL] [Abstract][Full Text] [Related]
20. Concordance between the deduced acetylation status generated by high-speed: real-time PCR based NAT2 genotyping of seven single nucleotide polymorphisms and human NAT2 phenotypes determined by a caffeine assay. Rihs HP; John A; Scherenberg M; Seidel A; Brüning T Clin Chim Acta; 2007 Feb; 376(1-2):240-3. PubMed ID: 17011540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]