BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 20602769)

  • 1. Contrasting chromatin organization of CpG islands and exons in the human genome.
    Choi JK
    Genome Biol; 2010; 11(7):R70. PubMed ID: 20602769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Links between DNA methylation and nucleosome occupancy in the human genome.
    Collings CK; Anderson JN
    Epigenetics Chromatin; 2017; 10():18. PubMed ID: 28413449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter.
    Han H; Cortez CC; Yang X; Nichols PW; Jones PA; Liang G
    Hum Mol Genet; 2011 Nov; 20(22):4299-310. PubMed ID: 21835883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA methylation determines nucleosome occupancy in the 5'-CpG islands of tumor suppressor genes.
    Portela A; Liz J; Nogales V; Setién F; Villanueva A; Esteller M
    Oncogene; 2013 Nov; 32(47):5421-8. PubMed ID: 23686312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biased chromatin signatures around polyadenylation sites and exons.
    Spies N; Nielsen CB; Padgett RA; Burge CB
    Mol Cell; 2009 Oct; 36(2):245-54. PubMed ID: 19854133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq).
    Rhie SK; Schreiner S; Farnham PJ
    Methods Mol Biol; 2018; 1766():209-229. PubMed ID: 29605855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure.
    Gelfman S; Cohen N; Yearim A; Ast G
    Genome Res; 2013 May; 23(5):789-99. PubMed ID: 23502848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosomes correlate with in vivo progression pattern of de novo methylation of p16 CpG islands in human gastric carcinogenesis.
    Lu ZM; Zhou J; Wang X; Guan Z; Bai H; Liu ZJ; Su N; Pan K; Ji J; Deng D
    PLoS One; 2012; 7(4):e35928. PubMed ID: 22558275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved role of intragenic DNA methylation in regulating alternative promoters.
    Maunakea AK; Nagarajan RP; Bilenky M; Ballinger TJ; D'Souza C; Fouse SD; Johnson BE; Hong C; Nielsen C; Zhao Y; Turecki G; Delaney A; Varhol R; Thiessen N; Shchors K; Heine VM; Rowitch DH; Xing X; Fiore C; Schillebeeckx M; Jones SJ; Haussler D; Marra MA; Hirst M; Wang T; Costello JF
    Nature; 2010 Jul; 466(7303):253-7. PubMed ID: 20613842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human epigenome data reveal increased CpG methylation in alternatively spliced sites and putative exonic splicing enhancers.
    Anastasiadou C; Malousi A; Maglaveras N; Kouidou S
    DNA Cell Biol; 2011 May; 30(5):267-75. PubMed ID: 21545276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation.
    Nguyen CT; Gonzales FA; Jones PA
    Nucleic Acids Res; 2001 Nov; 29(22):4598-606. PubMed ID: 11713309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of DNA methylation on nucleosome stability.
    Collings CK; Waddell PJ; Anderson JN
    Nucleic Acids Res; 2013 Mar; 41(5):2918-31. PubMed ID: 23355616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosome Positioning of Intronless Genes in the Human Genome.
    Cheng X; Hou Y; Nie Y; Zhang Y; Huang H; Liu H; Sun X
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1111-1121. PubMed ID: 26415210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleosome dynamics and maintenance of epigenetic states of CpG islands.
    Sneppen K; Dodd IB
    Phys Rev E; 2016 Jun; 93(6):062417. PubMed ID: 27415308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Putative promoters within gene bodies control exon expression via TET1-mediated H3K36 methylation.
    Ma L; Muhammad T; Wang H; Du G; Sakhawat A; Wei Y; Ali Khan A; Cong X; Huang Y
    J Cell Physiol; 2020 Oct; 235(10):6711-6724. PubMed ID: 31994732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters.
    Shen L; Kondo Y; Guo Y; Zhang J; Zhang L; Ahmed S; Shu J; Chen X; Waterland RA; Issa JP
    PLoS Genet; 2007 Oct; 3(10):2023-36. PubMed ID: 17967063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of DNA methylation in directing the functional organization of the cancer epigenome.
    Lay FD; Liu Y; Kelly TK; Witt H; Farnham PJ; Jones PA; Berman BP
    Genome Res; 2015 Apr; 25(4):467-77. PubMed ID: 25747664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA methylation effects on tetra-nucleosome compaction and aggregation.
    Jimenez-Useche I; Nurse NP; Tian Y; Kansara BS; Shim D; Yuan C
    Biophys J; 2014 Oct; 107(7):1629-36. PubMed ID: 25296315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast.
    Wilhelm BT; Marguerat S; Aligianni S; Codlin S; Watt S; Bähler J
    Genome Biol; 2011 Aug; 12(8):R82. PubMed ID: 21859475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa.
    Erkek S; Hisano M; Liang CY; Gill M; Murr R; Dieker J; Schübeler D; van der Vlag J; Stadler MB; Peters AH
    Nat Struct Mol Biol; 2013 Jul; 20(7):868-75. PubMed ID: 23770822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.