These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20602965)

  • 1. A sensitive, rapid ferricyanide-mediated toxicity bioassay developed using Escherichia coli.
    Catterall K; Robertson D; Hudson S; Teasdale PR; Welsh DT; John R
    Talanta; 2010 Jul; 82(2):751-7. PubMed ID: 20602965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics.
    Pujol-Vila F; Vigués N; Díaz-González M; Muñoz-Berbel X; Mas J
    Biosens Bioelectron; 2015 May; 67():272-9. PubMed ID: 25172027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid and sensitive p-benzoquinone-mediated bioassay for determination of heavy metal toxicity in water.
    Yu D; Zhai J; Yong D; Dong S
    Analyst; 2013 Jun; 138(11):3297-302. PubMed ID: 23612368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sensitive, rapid and inexpensive way to assay pesticide toxicity based on electrochemical biosensor.
    Yong D; Liu C; Yu D; Dong S
    Talanta; 2011 Mar; 84(1):7-12. PubMed ID: 21315890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a simple method for biotoxicity measurement using ultramicroelectrode array under non-deaerated condition.
    Yong D; Liu L; Yu D; Dong S
    Anal Chim Acta; 2011 Sep; 701(2):164-8. PubMed ID: 21801883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating use of ferricyanide-mediated respiration bioassays to quantify stimulatory and inhibitory effects on Escherichia coli populations.
    Catterall K; Robertson D; Teasdale PR; Welsh DT; John R
    Talanta; 2010 Mar; 80(5):1980-5. PubMed ID: 20152442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction.
    Pujol-Vila F; Vigués N; Guerrero-Navarro A; Jiménez S; Gómez D; Fernández M; Bori J; Vallès B; Riva MC; Muñoz-Berbel X; Mas J
    Anal Chim Acta; 2016 Mar; 910():60-7. PubMed ID: 26873469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intra-laboratory evaluation of Microbial Assay for Risk Assessment (MARA) for potential application in the implementation of the Water Framework Directive (WFD).
    Wadhia K; Dando T; Thompson KC
    J Environ Monit; 2007 Sep; 9(9):953-8. PubMed ID: 17726555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay.
    Bengtson Nash SM; Quayle PA; Schreiber U; Müller JF
    Aquat Toxicol; 2005 May; 72(4):315-26. PubMed ID: 15848251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of ferricyanide effects on microorganisms with multi-methods.
    Liu C; Sun T; Zhai Y; Dong S
    Talanta; 2009 Apr; 78(2):613-7. PubMed ID: 19203633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct toxicity assessment of toxic chemicals with electrochemical method.
    Liu C; Sun T; Xu X; Dong S
    Anal Chim Acta; 2009 May; 641(1-2):59-63. PubMed ID: 19393367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of a bioluminescent bacterial assay in terrestrial ecotoxicity testing.
    Trott D; Dawson JJ; Killham KS; Miah MR; Wilson MJ; Paton GI
    J Environ Monit; 2007 Jan; 9(1):44-50. PubMed ID: 17213941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli as a bioreporter in ecotoxicology.
    Robbens J; Dardenne F; Devriese L; De Coen W; Blust R
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1007-25. PubMed ID: 20803141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity.
    Bulich AA; Isenberg DL
    ISA Trans; 1981; 20(1):29-33. PubMed ID: 7251338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New toxicity determination method that uses fluorescent assay of Escherichia coli.
    Mariscal A; García A; Carnero M; Gómez E; Fernández-Crehuet J
    Biotechniques; 1994 May; 16(5):888-93. PubMed ID: 8068344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening.
    O'Brien PJ; Irwin W; Diaz D; Howard-Cofield E; Krejsa CM; Slaughter MR; Gao B; Kaludercic N; Angeline A; Bernardi P; Brain P; Hougham C
    Arch Toxicol; 2006 Sep; 80(9):580-604. PubMed ID: 16598496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey.
    Patton T; Barrett J; Brennan J; Moran N
    J Microbiol Methods; 2006 Jan; 64(1):84-95. PubMed ID: 15979745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals.
    Parvez S; Venkataraman C; Mukherji S
    Environ Int; 2006 Feb; 32(2):265-8. PubMed ID: 16188318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of microbial assay for risk assessment biotest in evaluation of toxicity of human and veterinary antibiotics.
    Nałecz-Jawecki G; Wadhia K; Adomas B; Piotrowicz-Cieślak AI; Sawicki J
    Environ Toxicol; 2010 Oct; 25(5):487-94. PubMed ID: 20549623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.