BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 20602968)

  • 1. Detection of FRET efficiency in imaging systems by photo-bleaching acceptors.
    Deng C; Li J; Ma W
    Talanta; 2010 Jul; 82(2):771-4. PubMed ID: 20602968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the distance separating fluorescent protein FRET pairs.
    Vogel SS; van der Meer BW; Blank PS
    Methods; 2014 Mar; 66(2):131-8. PubMed ID: 23811334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Sensors (Basel); 2011; 11(6):6214-36. PubMed ID: 22163951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin nanoscale compaction in live cells visualized by acceptor-to-donor ratio corrected Förster resonance energy transfer between DNA dyes.
    Pelicci S; Diaspro A; Lanzanò L
    J Biophotonics; 2019 Dec; 12(12):e201900164. PubMed ID: 31365191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerulean, Venus, and VenusY67C FRET reference standards.
    Koushik SV; Chen H; Thaler C; Puhl HL; Vogel SS
    Biophys J; 2006 Dec; 91(12):L99-L101. PubMed ID: 17040988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligase detection reaction generation of reverse molecular beacons for near real-time analysis of bacterial pathogens using single-pair fluorescence resonance energy transfer and a cyclic olefin copolymer microfluidic chip.
    Peng Z; Soper SA; Pingle MR; Barany F; Davis LM
    Anal Chem; 2010 Dec; 82(23):9727-35. PubMed ID: 21047095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the possibility of long-wavelength long-lifetime high-quantum-yield luminophores.
    Lakowicz JR; Piszczek G; Kang JS
    Anal Biochem; 2001 Jan; 288(1):62-75. PubMed ID: 11141307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a 3D Quantum Dot Nanoassembly with Two-Step FRET for One-Step Sensing of Human Telomerase RNA in Breast Cancer Cells and Tissues.
    Zhang Q; Liu H; Xu Q; Liu H; Han Y; Li DL; Ma F; Zhang CY
    Anal Chem; 2024 May; 96(19):7738-7746. PubMed ID: 38690966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring a coordinated exchange process in a four-component biological interaction system: development of a time-resolved terbium-based one-donor/three-acceptor multicolor FRET system.
    Kim SH; Gunther JR; Katzenellenbogen JA
    J Am Chem Soc; 2010 Apr; 132(13):4685-92. PubMed ID: 20230029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA tetrahedron-based dual-signal fluorescence detection of apoE4 gene sites on a microplate reader.
    Wang J; He Y; Liu L; Chen X; Hou X; Wang J; Yi X
    Mikrochim Acta; 2024 Apr; 191(5):288. PubMed ID: 38671226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule photon stamping FRET spectroscopy study of enzymatic conformational dynamics.
    He Y; Lu M; Lu HP
    Phys Chem Chem Phys; 2013 Jan; 15(3):770-5. PubMed ID: 23085845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flexible approach to the calculation of resonance energy transfer efficiency between multiple donors and acceptors in complex geometries.
    Corry B; Jayatilaka D; Rigby P
    Biophys J; 2005 Dec; 89(6):3822-36. PubMed ID: 16199497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MMP-2/9-Specific Activatable Lifetime Imaging Agent.
    Rood MT; Raspe M; ten Hove JB; Jalink K; Velders AH; van Leeuwen FW
    Sensors (Basel); 2015 May; 15(5):11076-91. PubMed ID: 25985157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of spectral FRET microscopy approaches for single-cell analysis.
    Deal J; Annamdevula N; Pleshinger DJ; Griswold JR; Odom A; Tayara A; Lall M; Browning C; Parker M; Rich TC; Leavesley SJ
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11243():. PubMed ID: 34035557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic incorporation of multiple dyes for increased sensitivity in QD-FRET sensing for DNA methylation detection.
    Bailey VJ; Keeley BP; Zhang Y; Ho YP; Easwaran H; Brock MV; Pelosky KL; Carraway HE; Baylin SB; Herman JG; Wang TH
    Chembiochem; 2010 Jan; 11(1):71-4. PubMed ID: 19904794
    [No Abstract]   [Full Text] [Related]  

  • 16. Spatiotemporal Measurement of Osmotic Pressures by FRET Imaging.
    Zhang W; Bertinetti L; Blank KG; Dimova R; Gao C; Schneck E; Fratzl P
    Angew Chem Int Ed Engl; 2021 Mar; 60(12):6488-6495. PubMed ID: 33188706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRET-based carbazole-fluorescein ionic nanoparticle for use as an effective bioimaging agent.
    Jalihal A; Krehbiel H; Macchi S; Forson M; Bashiru M; Le T; Kornelsen C; Siraj N
    Biofunctional Mater; 2023; 1(1):. PubMed ID: 38173822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Im-SCC-FRET: improved single-cell-based calibration of a FRET system.
    Jiang X; Hu M; Cao G; Liu Z; Wu G; Zhuang Z; Chen T
    Opt Express; 2023 Dec; 31(26):43764-43770. PubMed ID: 38178465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging specific newly synthesized proteins within cells by fluorescence resonance energy transfer.
    Sheng L; Cai L; Liu J; Zhang S; Xu JJ; Zhang X; Chen HY
    Chem Sci; 2017 Jan; 8(1):748-754. PubMed ID: 28451223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-distance tmFRET using bipyridyl- and phenanthroline-based ligands.
    Gordon SE; Evans EGB; Otto SC; Tessmer MH; Shaffer KD; Gordon MT; Petersson EJ; Stoll S; Zagotta WN
    bioRxiv; 2024 Jan; ():. PubMed ID: 37873407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.