These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
560 related articles for article (PubMed ID: 20603102)
21. Lipid bilayer topology of the transmembrane alpha-helix of M13 Major coat protein and bilayer polarity profile by site-directed fluorescence spectroscopy. Koehorst RB; Spruijt RB; Vergeldt FJ; Hemminga MA Biophys J; 2004 Sep; 87(3):1445-55. PubMed ID: 15345527 [TBL] [Abstract][Full Text] [Related]
22. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Jones DH; Barber KR; VanDerLoo EW; Grant CW Biochemistry; 1998 Nov; 37(47):16780-7. PubMed ID: 9843449 [TBL] [Abstract][Full Text] [Related]
23. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy. Caputo GA Methods Mol Biol; 2013; 1063():95-116. PubMed ID: 23975773 [TBL] [Abstract][Full Text] [Related]
24. Systematic molecular dynamics searching in a lipid bilayer: application to the glycophorin A and oncogenic ErbB-2 transmembrane domains. Beevers AJ; Kukol A J Mol Graph Model; 2006 Oct; 25(2):226-33. PubMed ID: 16434222 [TBL] [Abstract][Full Text] [Related]
25. [Modeling of peptides and proteins in a membrane environment.II. Structural and energetic aspects of Glycophorin A in a lipid bilayer]. Volynskiĭ PE; Nol'de DE; Arsen'ev AS; Efremov RG Bioorg Khim; 2000 Mar; 26(3):163-72. PubMed ID: 10816813 [TBL] [Abstract][Full Text] [Related]
26. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch. Yeagle PL; Bennett M; Lemaître V; Watts A Biochim Biophys Acta; 2007 Mar; 1768(3):530-7. PubMed ID: 17223071 [TBL] [Abstract][Full Text] [Related]
27. Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Ren J; Lew S; Wang Z; London E Biochemistry; 1997 Aug; 36(33):10213-20. PubMed ID: 9254619 [TBL] [Abstract][Full Text] [Related]
28. Analyzing Transmembrane Protein and Hydrophobic Helix Topography by Dual Fluorescence Quenching. Caputo GA; London E Methods Mol Biol; 2019; 2003():351-368. PubMed ID: 31218625 [TBL] [Abstract][Full Text] [Related]
29. Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices. Thibado JK; Martfeld AN; Greathouse DV; Koeppe RE Biochemistry; 2016 Nov; 55(45):6337-6343. PubMed ID: 27782382 [TBL] [Abstract][Full Text] [Related]
30. Effects of aromatic residues at the ends of transmembrane alpha-helices on helix interactions with lipid bilayers. Mall S; Broadbridge R; Sharma RP; Lee AG; East JM Biochemistry; 2000 Feb; 39(8):2071-8. PubMed ID: 10684657 [TBL] [Abstract][Full Text] [Related]
31. Role of side-chain conformational entropy in transmembrane helix dimerization of glycophorin A. Liu W; Crocker E; Siminovitch DJ; Smith SO Biophys J; 2003 Feb; 84(2 Pt 1):1263-71. PubMed ID: 12547806 [TBL] [Abstract][Full Text] [Related]
32. High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach. Wassenaar TA; Pluhackova K; Moussatova A; Sengupta D; Marrink SJ; Tieleman DP; Böckmann RA J Chem Theory Comput; 2015 May; 11(5):2278-91. PubMed ID: 26574426 [TBL] [Abstract][Full Text] [Related]
33. [Fundamental studies on membrane protein folding using model transmembrane helices]. Yano Y Yakugaku Zasshi; 2005 Sep; 125(9):725-32. PubMed ID: 16141692 [TBL] [Abstract][Full Text] [Related]
34. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition. Meijberg W; Booth PJ J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874 [TBL] [Abstract][Full Text] [Related]
35. Thermodynamic and kinetic stabilities of transmembrane helix bundles as revealed by single-pair FRET analysis: Effects of the number of membrane-spanning segments and cholesterol. Yano Y; Watanabe Y; Matsuzaki K Biochim Biophys Acta Biomembr; 2021 Mar; 1863(3):183532. PubMed ID: 33316240 [TBL] [Abstract][Full Text] [Related]
36. Topological stability and self-association of a completely hydrophobic model transmembrane helix in lipid bilayers. Yano Y; Takemoto T; Kobayashi S; Yasui H; Sakurai H; Ohashi W; Niwa M; Futaki S; Sugiura Y; Matsuzaki K Biochemistry; 2002 Mar; 41(9):3073-80. PubMed ID: 11863446 [TBL] [Abstract][Full Text] [Related]
37. The determinants of hydrophobic mismatch response for transmembrane helices. de Jesus AJ; Allen TW Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244 [TBL] [Abstract][Full Text] [Related]
38. Imaging forster resonance energy transfer measurements of transmembrane helix interactions in lipid bilayers on a solid support. Li E; Hristova K Langmuir; 2004 Oct; 20(21):9053-60. PubMed ID: 15461486 [TBL] [Abstract][Full Text] [Related]
39. Specificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants. Fleming KG; Engelman DM Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14340-4. PubMed ID: 11724930 [TBL] [Abstract][Full Text] [Related]
40. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity. Johnson RM; Rath A; Deber CM Biochem Cell Biol; 2006 Dec; 84(6):1006-12. PubMed ID: 17215886 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]