These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 20603235)
21. Comprehensive screening of amber suppressor tRNAs suitable for incorporation of non-natural amino acids in a cell-free translation system. Taira H; Matsushita Y; Kojima K; Shiraga K; Hohsaka T Biochem Biophys Res Commun; 2008 Sep; 374(2):304-8. PubMed ID: 18634752 [TBL] [Abstract][Full Text] [Related]
22. PURE technology. Shimizu Y; Ueda T Methods Mol Biol; 2010; 607():11-21. PubMed ID: 20204844 [TBL] [Abstract][Full Text] [Related]
23. Incorporation of fluorescent non-natural amino acids into N-terminal tag of proteins in cell-free translation and its dependence on position and neighboring codons. Abe R; Shiraga K; Ebisu S; Takagi H; Hohsaka T J Biosci Bioeng; 2010 Jul; 110(1):32-8. PubMed ID: 20541112 [TBL] [Abstract][Full Text] [Related]
24. Coping with complexity: machine learning optimization of cell-free protein synthesis. Caschera F; Bedau MA; Buchanan A; Cawse J; de Lucrezia D; Gazzola G; Hanczyc MM; Packard NH Biotechnol Bioeng; 2011 Sep; 108(9):2218-28. PubMed ID: 21520017 [TBL] [Abstract][Full Text] [Related]
25. Effects of release factor 1 on in vitro protein translation and the elaboration of proteins containing unnatural amino acids. Short GF; Golovine SY; Hecht SM Biochemistry; 1999 Jul; 38(27):8808-19. PubMed ID: 10393557 [TBL] [Abstract][Full Text] [Related]
26. [Simplification and optimization of the preparation of Escherichia coli extract for cell-free protein expression]. Guo X; Quan C; Zhao P; Wang L; Fan S Sheng Wu Gong Cheng Xue Bao; 2013 Apr; 29(4):532-5. PubMed ID: 23894826 [TBL] [Abstract][Full Text] [Related]
27. Improvements in the cell-free production of functional antibodies using cell extract from protease-deficient Escherichia coli mutant. Ali M; Suzuki H; Fukuba T; Jiang X; Nakano H; Yamane T J Biosci Bioeng; 2005 Feb; 99(2):181-6. PubMed ID: 16233776 [TBL] [Abstract][Full Text] [Related]
28. Amino acid composition is correlated with protein abundance in Escherichia coli: can this be due to optimization of translational efficiency? Shpaer EG Protein Seq Data Anal; 1989 Feb; 2(2):107-10. PubMed ID: 2652142 [TBL] [Abstract][Full Text] [Related]
29. Simultaneous expression and maturation of the iron-sulfur protein ferredoxin in a cell-free system. Boyer ME; Wang CW; Swartz JR Biotechnol Bioeng; 2006 May; 94(1):128-38. PubMed ID: 16570319 [TBL] [Abstract][Full Text] [Related]
30. Design of carrier tRNAs and selection of four-base codons for efficient incorporation of various nonnatural amino acids into proteins in Spodoptera frugiperda 21 (Sf21) insect cell-free translation system. Taki M; Tokuda Y; Ohtsuki T; Sisido M J Biosci Bioeng; 2006 Dec; 102(6):511-7. PubMed ID: 17270715 [TBL] [Abstract][Full Text] [Related]
31. Substrate replenishment extends protein synthesis with an in vitro translation system designed to mimic the cytoplasm. Jewett MC; Swartz JR Biotechnol Bioeng; 2004 Aug; 87(4):465-72. PubMed ID: 15286983 [TBL] [Abstract][Full Text] [Related]
32. Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Jewett MC; Swartz JR Biotechnol Bioeng; 2004 Apr; 86(1):19-26. PubMed ID: 15007837 [TBL] [Abstract][Full Text] [Related]
33. Improving cell-free protein synthesis through genome engineering of Escherichia coli lacking release factor 1. Hong SH; Kwon YC; Martin RW; Des Soye BJ; de Paz AM; Swonger KN; Ntai I; Kelleher NL; Jewett MC Chembiochem; 2015 Mar; 16(5):844-53. PubMed ID: 25737329 [TBL] [Abstract][Full Text] [Related]
35. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system. Taira H; Hohsaka T; Sisido M Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877 [TBL] [Abstract][Full Text] [Related]
36. A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Kim DM; Choi CY Biotechnol Prog; 1996; 12(5):645-9. PubMed ID: 8879155 [TBL] [Abstract][Full Text] [Related]
37. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes. Hino M; Kataoka M; Kajimoto K; Yamamoto T; Kido J; Shinohara Y; Baba Y J Biotechnol; 2008 Jan; 133(2):183-9. PubMed ID: 17826860 [TBL] [Abstract][Full Text] [Related]
38. Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. Kim TW; Keum JW; Oh IS; Choi CY; Park CG; Kim DM J Biotechnol; 2006 Dec; 126(4):554-61. PubMed ID: 16797767 [TBL] [Abstract][Full Text] [Related]
39. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering. Hatfield GW; Roth DA Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472 [TBL] [Abstract][Full Text] [Related]
40. Cell-free protein production system with the E. coli crude extract for determination of protein folds. Kigawa T Methods Mol Biol; 2010; 607():101-11. PubMed ID: 20204852 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]