These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 20603370)
41. Decay of turbulence at high reynolds numbers. Sinhuber M; Bodenschatz E; Bewley GP Phys Rev Lett; 2015 Jan; 114(3):034501. PubMed ID: 25659002 [TBL] [Abstract][Full Text] [Related]
42. Two-point wavepacket modelling of jet noise. Maia IA; Jordan P; Cavalieri AVG; Jaunet V Proc Math Phys Eng Sci; 2019 Jul; 475(2227):20190199. PubMed ID: 31423099 [TBL] [Abstract][Full Text] [Related]
43. Utilization of ultrasound to enhance high-speed water jet effects. Foldyna J; Sitek L; Svehla B; Svehla S Ultrason Sonochem; 2004 May; 11(3-4):131-7. PubMed ID: 15081969 [TBL] [Abstract][Full Text] [Related]
44. Coupled hydrodynamic-acoustic modeling of sound generated by impacting cylindrical water jets. Chen X; Means SL; Szymczak WG; Rogers JC J Acoust Soc Am; 2008 Aug; 124(2):841-50. PubMed ID: 18681576 [TBL] [Abstract][Full Text] [Related]
45. Compressibility effects in Rayleigh-Taylor instability-induced flows. Gauthier S; Le Creurer B Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880 [TBL] [Abstract][Full Text] [Related]
46. A phenomenological approach to jet noise: the two-source model. Tam CKW Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190078. PubMed ID: 31607248 [TBL] [Abstract][Full Text] [Related]
47. Propulsive jets and their acoustics. Secundov AN; Birch SF; Tucker PG Philos Trans A Math Phys Eng Sci; 2007 Oct; 365(1859):2443-67. PubMed ID: 17519200 [TBL] [Abstract][Full Text] [Related]
48. Use of a jet mill for dispersing dry powder for inhalation studies. Cheng YS; Marshall TC; Henderson RF; Newton GJ Am Ind Hyg Assoc J; 1985 Aug; 46(8):449-54. PubMed ID: 4050682 [TBL] [Abstract][Full Text] [Related]
49. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Heimpel M; Aurnou J; Wicht J Nature; 2005 Nov; 438(7065):193-6. PubMed ID: 16281029 [TBL] [Abstract][Full Text] [Related]
54. On the wavenumber spectra for sound within subsonic jets. Agarwal A; Sinayoko S; Sandberg RD J Acoust Soc Am; 2014 Sep; 136(3):1029. PubMed ID: 25190378 [TBL] [Abstract][Full Text] [Related]
55. The onset of turbulence in pipe flow. Avila K; Moxey D; de Lozar A; Avila M; Barkley D; Hof B Science; 2011 Jul; 333(6039):192-6. PubMed ID: 21737736 [TBL] [Abstract][Full Text] [Related]
56. Generation Mechanism and Prediction Model for Low Frequency Noise Induced by Energy Dissipating Submerged Jets during Flood Discharge from a High Dam. Lian J; Zhang W; Guo Q; Liu F Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27314374 [TBL] [Abstract][Full Text] [Related]
57. Random focusing of nonlinear acoustic N-waves in fully developed turbulence: laboratory scale experiment. Averiyanov M; Ollivier S; Khokhlova V; Blanc-Benon P J Acoust Soc Am; 2011 Dec; 130(6):3595-607. PubMed ID: 22225017 [TBL] [Abstract][Full Text] [Related]
58. Steady active control of noise radiation from highly heated supersonic jets. Prasad C; Morris PJ J Acoust Soc Am; 2021 Feb; 149(2):1306. PubMed ID: 33639803 [TBL] [Abstract][Full Text] [Related]
59. Elastic turbulence in a polymer solution flow. Groisman A; Steinberg V Nature; 2000 May; 405(6782):53-5. PubMed ID: 10811214 [TBL] [Abstract][Full Text] [Related]
60. Computational fluid dynamics simulation of sound propagation through a blade row. Zhao L; Qiao W; Ji L J Acoust Soc Am; 2012 Oct; 132(4):2210-7. PubMed ID: 23039417 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]