These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20603378)

  • 1. Triggered infrared spectroscopy for investigating metalloprotein chemistry.
    Vincent KA
    Philos Trans A Math Phys Eng Sci; 2010 Aug; 368(1924):3713-31. PubMed ID: 20603378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemically induced far-infrared difference spectroscopy on metalloproteins using advanced synchrotron technology.
    Vita N; Brubach JB; Hienerwadel R; Bremond N; Berthomieu D; Roy P; Berthomieu C
    Anal Chem; 2013 Mar; 85(5):2891-8. PubMed ID: 23360365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amide I two-dimensional infrared spectroscopy of proteins.
    Ganim Z; Chung HS; Smith AW; Deflores LP; Jones KC; Tokmakoff A
    Acc Chem Res; 2008 Mar; 41(3):432-41. PubMed ID: 18288813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand dynamics in heme proteins observed by Fourier transform infrared spectroscopy at cryogenic temperatures.
    Nienhaus K; Nienhaus GU
    Methods Enzymol; 2008; 437():347-78. PubMed ID: 18433637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically induced FTIR difference spectroscopy in the mid- to far infrared (200 microm) domain: a new setup for the analysis of metal-ligand interactions in redox proteins.
    Berthomieu C; Marboutin L; Dupeyrat F; Bouyer P
    Biopolymers; 2006 Jul; 82(4):363-7. PubMed ID: 16453337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins.
    Radu I; Schleeger M; Bolwien C; Heberle J
    Photochem Photobiol Sci; 2009 Nov; 8(11):1517-28. PubMed ID: 19862409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale spectroscopy and imaging of hemoglobin.
    Kennedy E; Yarrow F; Rice JH
    J Biophotonics; 2011 Sep; 4(9):588-91. PubMed ID: 21374826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an infrared spectroscopic approach for studying metalloenzyme active site chemistry under direct electrochemical control.
    Healy AJ; Reeve HA; Vincent KA
    Faraday Discuss; 2011; 148():345-57; discussion 421-41. PubMed ID: 21322492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing isostructural metal substitution in metalloproteins using 1H NMR, circular dichroism, and Fourier transform infrared spectroscopy.
    Pountney DL; Henehan CJ; Vasák M
    Protein Sci; 1995 Aug; 4(8):1571-6. PubMed ID: 8520483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of infrared spectroscopy to monitor protein structure and stability.
    Manning MC
    Expert Rev Proteomics; 2005 Oct; 2(5):731-43. PubMed ID: 16209652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: application to protein conformation study using the example of ubiquitin.
    Kakuta M; Hinsmann P; Manz A; Lendl B
    Lab Chip; 2003 May; 3(2):82-5. PubMed ID: 15100787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region.
    Carbonaro M; Nucara A
    Amino Acids; 2010 Mar; 38(3):679-90. PubMed ID: 19350368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic calculations for assignment of infrared difference bands to carboxyl groups getting protonated during protein reactions.
    Hauser K
    Biopolymers; 2006 Jul; 82(4):430-4. PubMed ID: 16283666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional infrared spectroscopy of antiparallel beta-sheet secondary structure.
    Demirdöven N; Cheatum CM; Chung HS; Khalil M; Knoester J; Tokmakoff A
    J Am Chem Soc; 2004 Jun; 126(25):7981-90. PubMed ID: 15212548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of external-cavity quantum cascade infrared lasers to nanosecond time-resolved infrared spectroscopy of condensed-phase samples following pulse radiolysis.
    Grills DC; Cook AR; Fujita E; George MW; Preses JM; Wishart JF
    Appl Spectrosc; 2010 Jun; 64(6):563-70. PubMed ID: 20537222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier transform infrared spectroscopy for molecular analysis of microbial cells.
    Ojeda JJ; Dittrich M
    Methods Mol Biol; 2012; 881():187-211. PubMed ID: 22639215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring protein-ligand interactions by time-resolved FTIR difference spectroscopy.
    Kötting C; Gerwert K
    Methods Mol Biol; 2005; 305():261-86. PubMed ID: 15940002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand dynamics in heme proteins observed by Fourier transform infrared-temperature derivative spectroscopy.
    Nienhaus K; Nienhaus GU
    Biochim Biophys Acta; 2011 Aug; 1814(8):1030-41. PubMed ID: 20656073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.