BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 20603537)

  • 1. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide.
    Lin PT; Lee PT
    Opt Lett; 2011 Feb; 36(3):424-6. PubMed ID: 21283211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomanipulation using silicon photonic crystal resonators.
    Mandal S; Serey X; Erickson D
    Nano Lett; 2010 Jan; 10(1):99-104. PubMed ID: 19957918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
    van Leest T; Caro J
    Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active particle control through silicon using conventional optical trapping techniques.
    Appleyard DC; Lang MJ
    Lab Chip; 2007 Dec; 7(12):1837-40. PubMed ID: 18030409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip supercontinuum optical trapping and resonance excitation of microspheres.
    Nitkowski A; Gondarenko A; Lipson M
    Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection.
    Lin S; Hu J; Kimerling L; Crozier K
    Opt Lett; 2009 Nov; 34(21):3451-3. PubMed ID: 19881624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals.
    Descharmes N; Dharanipathy UP; Diao Z; Tonin M; Houdré R
    Lab Chip; 2013 Aug; 13(16):3268-74. PubMed ID: 23797114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.
    Lei T; Poon AW
    Opt Express; 2013 Jan; 21(2):1520-30. PubMed ID: 23389134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Raman tweezers by phase-sensitive detection.
    Rusciano G; De Luca AC; Sasso A; Pesce G
    Anal Chem; 2007 May; 79(10):3708-15. PubMed ID: 17444615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping and emission of photons by a single defect in a photonic bandgap structure.
    Noda S; Chutinan A; Imada M
    Nature; 2000 Oct; 407(6804):608-10. PubMed ID: 11034204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subwavelength direct-write nanopatterning using optically trapped microspheres.
    McLeod E; Arnold CB
    Nat Nanotechnol; 2008 Jul; 3(7):413-7. PubMed ID: 18654565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
    Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG
    Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angular orientation of nanorods using nanophotonic tweezers.
    Kang P; Serey X; Chen YF; Erickson D
    Nano Lett; 2012 Dec; 12(12):6400-7. PubMed ID: 23145817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide.
    Pin C; Jager JB; Tardif M; Picard E; Hadji E; de Fornel F; Cluzel B
    Lab Chip; 2018 Jun; 18(12):1750-1757. PubMed ID: 29774333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping-assisted sensing of particles and proteins using on-chip optical microcavities.
    Lin S; Crozier KB
    ACS Nano; 2013 Feb; 7(2):1725-30. PubMed ID: 23311448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy.
    Gessner R; Winter C; Rösch P; Schmitt M; Petry R; Kiefer W; Lankers M; Popp J
    Chemphyschem; 2004 Aug; 5(8):1159-70. PubMed ID: 15446738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.