BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 20603660)

  • 1. Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations.
    Zgarbová M; Otyepka M; Sponer J; Hobza P; Jurecka P
    Phys Chem Chem Phys; 2010 Sep; 12(35):10476-93. PubMed ID: 20603660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the reliability of the AMBER force field and its empirical dispersion contribution for the description of noncovalent complexes.
    Kolár M; Berka K; Jurecka P; Hobza P
    Chemphyschem; 2010 Aug; 11(11):2399-408. PubMed ID: 20629063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations.
    Misquitta AJ; Podeszwa R; Jeziorski B; Szalewicz K
    J Chem Phys; 2005 Dec; 123(21):214103. PubMed ID: 16356035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of boranes and carboranes with aromatic systems: CCSD(T) complete basis set calculations and DFT-SAPT analysis of energy components.
    Sedlák R; Fanfrlík J; Hnyk D; Hobza P; Lepsík M
    J Phys Chem A; 2010 Oct; 114(42):11304-11. PubMed ID: 20831237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of intermolecular interaction energies from SAPT and DFT including empirical dispersion contributions.
    Hesselmann A
    J Phys Chem A; 2011 Oct; 115(41):11321-30. PubMed ID: 21806071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations.
    Jurecka P; Cerný J; Hobza P; Salahub DR
    J Comput Chem; 2007 Jan; 28(2):555-69. PubMed ID: 17186489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the accuracy of SAPT(DFT) interaction energies by comparison with experimentally derived noble gas potentials and molecular crystal lattice energies.
    Bordner AJ
    Chemphyschem; 2012 Dec; 13(17):3981-8. PubMed ID: 23060262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations.
    Sagui C; Pedersen LG; Darden TA
    J Chem Phys; 2004 Jan; 120(1):73-87. PubMed ID: 15267263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physically-motivated force fields from symmetry-adapted perturbation theory.
    McDaniel JG; Schmidt JR
    J Phys Chem A; 2013 Mar; 117(10):2053-66. PubMed ID: 23343200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How the stabilization of INK4 tumor suppressor 3D structure evaluated by quantum chemical and molecular mechanics calculations corresponds well with experimental results: interplay of association enthalpy, entropy, and solvation effects.
    Otyepka M; Sklenovský P; Horinek D; Kubar T; Hobza P
    J Phys Chem B; 2006 Mar; 110(9):4423-9. PubMed ID: 16509744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unified treatment of chemical and van der Waals forces via symmetry-adapted perturbation expansion.
    Patkowski K; Jeziorski B; Szalewicz K
    J Chem Phys; 2004 Apr; 120(15):6849-62. PubMed ID: 15267584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules.
    McNamara JP; Hillier IH
    Phys Chem Chem Phys; 2007 May; 9(19):2362-70. PubMed ID: 17492099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The properties of weak and strong dihydrogen-bonded D-H...H-A complexes.
    Cybulski H; Tymińska E; Sadlej J
    Chemphyschem; 2006 Mar; 7(3):629-39. PubMed ID: 16477668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction to DFT interaction energies by an empirical dispersion term valid for a range of intermolecular distances.
    Deligkaris C; Rodriguez JH
    Phys Chem Chem Phys; 2012 Mar; 14(10):3414-24. PubMed ID: 22297728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies.
    Hesselmann A; Jansen G; Schütz M
    J Chem Phys; 2005 Jan; 122(1):14103. PubMed ID: 15638638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of transition metal atoms in high-spin states: Cr2, Sc-Cr, and Sc-Kr.
    Rajchel L; Zuchowski PS; Kłos J; Szcześniak MM; Chałasiński G
    J Chem Phys; 2007 Dec; 127(24):244302. PubMed ID: 18163670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How accurate is the density functional theory combined with symmetry-adapted perturbation theory approach for CH-pi and pi-pi interactions? A comparison to supermolecular calculations for the acetylene-benzene dimer.
    Tekin A; Jansen G
    Phys Chem Chem Phys; 2007 Apr; 9(14):1680-7. PubMed ID: 17396179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NENCI-2021. I. A large benchmark database of non-equilibrium non-covalent interactions emphasizing close intermolecular contacts.
    Sparrow ZM; Ernst BG; Joo PT; Lao KU; DiStasio RA
    J Chem Phys; 2021 Nov; 155(18):184303. PubMed ID: 34773949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy ranking of molecular crystals using density functional theory calculations and an empirical van der waals correction.
    Neumann MA; Perrin MA
    J Phys Chem B; 2005 Aug; 109(32):15531-41. PubMed ID: 16852970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.