These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20603686)

  • 1. Characterization of the effect of physiological cations on quantum dots by using single-particle detection.
    Zhang CY; Li D
    Analyst; 2010 Sep; 135(9):2355-9. PubMed ID: 20603686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution.
    Chen J; Zheng A; Gao Y; He C; Wu G; Chen Y; Kai X; Zhu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):1044-52. PubMed ID: 17660001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots.
    Ali EM; Zheng Y; Yu HH; Ying JY
    Anal Chem; 2007 Dec; 79(24):9452-8. PubMed ID: 18004817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes.
    Wu CS; Khaing Oo MK; Fan X
    ACS Nano; 2010 Oct; 4(10):5897-904. PubMed ID: 20925347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and accurate quantification of quantum dots via single-particle counting.
    Zhang CY; Johnson LW
    J Am Chem Soc; 2008 Mar; 130(12):3750-1. PubMed ID: 18311984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy.
    Dong C; Qian H; Fang N; Ren J
    J Phys Chem B; 2006 Jun; 110(23):11069-75. PubMed ID: 16771367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II).
    Xia YS; Zhu CQ
    Talanta; 2008 Mar; 75(1):215-21. PubMed ID: 18371870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids.
    He Y; Wang HF; Yan XP
    Anal Chem; 2008 May; 80(10):3832-7. PubMed ID: 18407673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azamacrocycle activated quantum dot for zinc ion detection.
    Ruedas-Rama MJ; Hall EA
    Anal Chem; 2008 Nov; 80(21):8260-8. PubMed ID: 18841921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single quantum dot-based nanosensor for multiple DNA detection.
    Zhang CY; Hu J
    Anal Chem; 2010 Mar; 82(5):1921-7. PubMed ID: 20121246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes].
    Ling X; Deng DW; Zhong WY; Yu JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1317-21. PubMed ID: 18800713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive copper(II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots.
    Chan YH; Chen J; Liu Q; Wark SE; Son DH; Batteas JD
    Anal Chem; 2010 May; 82(9):3671-8. PubMed ID: 20377191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcontact printing of quantum dot bioconjugate arrays for localized capture and detection of biomolecules.
    Pattani VP; Li C; Desai TA; Vu TQ
    Biomed Microdevices; 2008 Jun; 10(3):367-74. PubMed ID: 18183489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blinking effect and the use of quantum dots in single molecule spectroscopy.
    Rombach-Riegraf V; Oswald P; Bienert R; Petersen J; Domingo MP; Pardo J; Gräber P; Galvez EM
    Biochem Biophys Res Commun; 2013 Jan; 430(1):260-4. PubMed ID: 23159631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common mechanism underlies the dark fraction formation and fluorescence blinking of quantum dots.
    Durisic N; Wiseman PW; Grütter P; Heyes CD
    ACS Nano; 2009 May; 3(5):1167-75. PubMed ID: 19385605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows.
    Zhang CY; Johnson LW
    Anal Chem; 2006 Aug; 78(15):5532-7. PubMed ID: 16878892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing.
    Cao L; Ye J; Tong L; Tang B
    Chemistry; 2008; 14(31):9633-40. PubMed ID: 18792902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subsecond luminescence intensity fluctuations of single CdSe quantum dots.
    Biju V; Makita Y; Nagase T; Yamaoka Y; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Aug; 109(30):14350-5. PubMed ID: 16852805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic investigation of the influence of CdTe QDs size on the toxic interaction with human serum albumin by fluorescence quenching method.
    Xiao J; Bai Y; Wang Y; Chen J; Wei X
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jun; 76(1):93-7. PubMed ID: 20359940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward single-metal-ion sensing by Förster resonance energy transfer.
    Sutter JU; Macmillan AM; Birch DJ; Rolinski OJ
    Ann N Y Acad Sci; 2008; 1130():62-7. PubMed ID: 18596333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.