These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20603694)

  • 1. Comparison of energy costs leg-cycling with or without functional electrical stimulation and manual wheelchairs for patients after stroke.
    Lo HC; Yeh CY; Su FC; Tsai KH
    J Rehabil Med; 2010 Jul; 42(7):645-9. PubMed ID: 20603694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of a functional electrical stimulation-assisted leg-cycling wheelchair on reducing spasticity of patients after stroke.
    Lo HC; Tsai KH; Su FC; Chang GL; Yeh CY
    J Rehabil Med; 2009 Mar; 41(4):242-6. PubMed ID: 19247543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of a bout of leg cycling with electrical stimulation on reduction of hypertonia in patients with stroke.
    Yeh CY; Tsai KH; Su FC; Lo HC
    Arch Phys Med Rehabil; 2010 Nov; 91(11):1731-6. PubMed ID: 21044718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of functional electrical stimulation-assisted leg-propelled wheelchair in hemiplegic patients.
    Lo HC; Tsai KH; Yeh CY; Chang GL; Su FC
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S67-73. PubMed ID: 18586367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved efficiency with a wheelchair propelled by the legs using voluntary activity or electric stimulation.
    Stein RB; Chong SL; James KB; Bell GJ
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1198-203. PubMed ID: 11552191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllability and physiological evaluation of three unilaterally-propelled wheelchairs for patients with hemiplegia.
    Tsai KH; Yeh CY; Lo HC; Lin SY
    J Rehabil Med; 2007 Nov; 39(9):693-7. PubMed ID: 17999006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury.
    Nash MS; Koppens D; van Haaren M; Sherman AL; Lippiatt JP; Lewis JE
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speed and physiological cost index of hemiplegic patients pedalling a wheelchair with both legs.
    Makino K; Wada F; Hachisuka K; Yoshimoto N; Ohmine S
    J Rehabil Med; 2005 Mar; 37(2):83-6. PubMed ID: 15788342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of a pushrim-activated power-assisted wheelchair on the metabolic demands, stroke frequency, and range of motion among subjects with tetraplegia.
    Algood SD; Cooper RA; Fitzgerald SG; Cooper R; Boninger ML
    Arch Phys Med Rehabil; 2004 Nov; 85(11):1865-71. PubMed ID: 15520983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs.
    Pavlidou E; Kloosterman MG; Buurke JH; Rietman JS; Janssen TW
    Med Eng Phys; 2015 Nov; 37(11):1105-10. PubMed ID: 26376474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measures of energy expenditure and comfort in an ESP wheelchair: a controlled trial using hemiplegic users'.
    Mandy A; Lesley S
    Disabil Rehabil Assist Technol; 2009 May; 4(3):137-42. PubMed ID: 19241200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of 3 pushrim-activated power-assisted wheelchairs in patients with spinal cord injury.
    Guillon B; Van-Hecke G; Iddir J; Pellegrini N; Beghoul N; Vaugier I; Figère M; Pradon D; Lofaso F
    Arch Phys Med Rehabil; 2015 May; 96(5):894-904. PubMed ID: 25620717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of functional electrical stimulation on the effort and walking speed, surface electromyography activity, and metabolic responses in stroke subjects.
    Sabut SK; Lenka PK; Kumar R; Mahadevappa M
    J Electromyogr Kinesiol; 2010 Dec; 20(6):1170-7. PubMed ID: 20692180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical efficiency and user power requirement with a pushrim activated power assisted wheelchair.
    Arva J; Fitzgerald SG; Cooper RA; Boninger ML
    Med Eng Phys; 2001 Dec; 23(10):699-705. PubMed ID: 11801411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary tests of a prototype FES control system for cycling wheelchair rehabilitation.
    Watanabe T; Murakami T; Handa Y
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650484. PubMed ID: 24187301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and development of solar power-assisted manual/electric wheelchair.
    Chien CS; Huang TY; Liao TY; Kuo TY; Lee TM
    J Rehabil Res Dev; 2014; 51(9):1411-25. PubMed ID: 25785910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of steering on the physiological energy cost of wheelchair propulsion.
    Reid M; Lawrie AT; Hunter J; Warren PM
    Scand J Rehabil Med; 1990; 22(3):139-43. PubMed ID: 2244191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.